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ABSTRACT
Graphs in real life applications are often huge, such as the Web
graph and various social networks. These massive graphs are often
stored and processed in distributed sites. In this paper, we study
graph algorithms that adopt Google’s Pregel, an iterative vertex-
centric framework for graph processing in the Cloud. We first iden-
tify a set of desirable properties of an efficient Pregel algorithm,
such as linear space, communication and computation cost per it-
eration, and logarithmic number of iterations. We define such an
algorithm as a practical Pregel algorithm (PPA). We then propose
PPAs for computing connected components (CCs), biconnected com-
ponents (BCCs) and strongly connected components (SCCs). The
PPAs for computing BCCs and SCCs use the PPAs of many funda-
mental graph problems as building blocks, which are of interest by
themselves. Extensive experiments over large real graphs verified
the efficiency of our algorithms.

1. INTRODUCTION
The popularity of online social networks, mobile communication

networks and semantic web services, has stimulated a growing in-
terest in conducting efficient and effective analysis on massive real-
world graphs. To process such large graphs, Google’s Pregel [12]
proposed the vertex-centric computing paradigm, which allows pro-
grammers to think naturally like a vertex when designing distributed
graph algorithms. A Pregel-like system runs on a shared-nothing
distributed computing infrastructure which can be deployed easily
on a cluster of low-cost commodity PCs. The system also removes
from programmers the burden of handling fault recovery, which is
important for programs running in a cloud environment.

Pregel was shown to be more suitable for iterative graph compu-
tation than the MapReduce model [8, 12, 13]. However, while ex-
isting work on Pregel algorithms [13] gives a good demonstration
of how Pregel can be used to solve a number of graph problems,
they lack formal analysis on the cost complexity.

In this paper, we study three fundamental graph connectivity
problems and propose Pregel algorithms as solutions that have per-
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formance guarantees. The problems we study are connected com-
ponents (CCs), bi-connected components (BCCs), and strongly con-
nected components (SCCs). These problems have numerous real
life applications and their solutions are essential building blocks for
solving many other graph problems. For example, computing the
BCCs of a telecommunications network can help detect the weak-
nesses in network design, while almost all reachability indices re-
quire SCC computation as a preprocessing step [4].

To avoid ad hoc algorithm design and ensure good performance,
we define a class of Pregel algorithms that satisfy a set of rigid,
but practical, constraints on various performance metrics: (1)lin-
ear space usage, (2)linear computation cost per iteration1, (3)lin-
ear communication cost per iteration, and (4)at most logarithmic
number of iterations. We call such algorithms as Practical Pregel
Algorithms (PPAs). A similar but stricter set of constraints was
proposed for the MapReduce model recently [19]. In contrast to
our requirement of logarithmic number of iterations, their work
demands a constant number of iterations, which is too restrictive
for most graph problems. In fact, even list ranking (i.e., ranking
vertices in a directed graph consisting of only one simple path)
requires O(logn) time using O(n) processors under the shared-
memory PRAM model [22], where n is the number of vertices.
This bound also applies to many other basic graph problems such
as connected components and spanning tree [18].

It is challenging to design Pregel algorithms for problems such as
BCCs and SCCs. Although there are simple sequential algorithms
for computing BCCs and SCCs based on depth-first search (DFS),
DFS is P-Complete [15] and hence it cannot be applied to design
parallel algorithms for computing BCCs and SCCs.

We apply the principle of PPA to develop Pregel algorithms that
satisfy strict performance guarantees. In particular, to compute
BCCs and SCCs, we develop a set of useful building blocks that
are the PPAs of fundamental graph problems such as breadth-first
search, list ranking, spanning tree, Euler tour, and pre/post-order
traversal. As fundamental graph problems, their PPA solutions can
also be applied to numerous other graph problems besides BCCs
and SCCs considered in this paper.

We evaluate the performance of our Pregel algorithms using large
real-world graphs with up to hundreds of millions of vertices and
billions of edges. Our results verify that our algorithms are efficient
for computing CCs, BCCs and SCCs in massive graphs.

The rest of this paper is organized as follows. Section 2 reviews
Pregel and related work. We define PPA in Section 3. Sections 4-6
discuss algorithms for CCs, BCCs and SCCs. Then, we report the

1A Pregel algorithm proceeds in iterations (or supersteps).



experimental results in Section 7 and conclude in Section 8.

2. RELATED WORK
Pregel [12]. Pregel is designed based on the bulk synchronous par-
allel (BSP) model. It distributes vertices to different machines
in a cluster, where each vertex v is associated with its adjacency
list (i.e., the set of v’s neighbors). A program in Pregel imple-
ments a user-defined compute() function and proceeds in iterations
(called supersteps). In each superstep, the program calls compute()
for each active vertex. The compute() function performs the user-
specified task for a vertex v, such as processing v’s incoming mes-
sages (sent in the previous superstep), sending messages to other
vertices (to be received in the next superstep), and making v vote
to halt. A halted vertex is reactivated if it receives a message in
a subsequent superstep. The program terminates when all vertices
vote to halt and there is no pending message for the next superstep.

Pregel numbers the supersteps so that a user may use the cur-
rent superstep number when implementing the algorithm logic in
the compute() function. As a result, a Pregel algorithm can per-
form different operations in different supersteps by branching on
the current superstep number.

Pregel allows users to implement a combine() function, which
specifies how to combine messages that are sent from a machine
Mi to the same vertex v in a machine Mj . These messages are
combined into a single message, which is then sent from Mi to
v in Mj . Combiner is applied only when commutative and asso-
ciative operations are to be applied to the messages. For example,
in Pregel’s PageRank algorithm [12], messages from machine Mi

that are to be sent to the same target vertex in machine Mj can
be combined into a single message that equals their sum, since the
target vertex is only interested in the sum of the messages. Pregel
also supports aggregator, which is useful for global communica-
tion. Each vertex can provide a value to an aggregator in compute()
in a superstep. The system aggregates those values and makes the
aggregated result available to all vertices in the next superstep.

Pregel Algorithms. Besides this paper and Google’s original pa-
per on Pregel [12], we are only aware of two other papers studying
Pregel algorithms, [13] and [17]. However, the algorithms are de-
signed on a best-effort basis without any formal analysis on their
complexity. Specifically, [13] aims at demonstrating that the Pregel
model can be adopted to solve many graph problems in social net-
work analysis, while [17] focuses on optimization techniques that
overcome some performance bottlenecks caused by straightforward
Pregel implementations.

GraphLab [11] and PowerGraph [10]. GraphLab [11] is another
vertex-centric distributed graph computing system but it follows a
different design from Pregel. GraphLab supports both synchronous
and asynchronous executions. However, asynchronous execution
does not have the concept of superstep number and hence cannot
support algorithms that branch to different operations at different
supersteps, such as the S-V algorithm in Section 4.2. Moreover,
since GraphLab is mainly designed for asynchronous execution, its
synchronous mode is not as expressive as Pregel. For example,
since GraphLab only allows a vertex to access the states of its adja-
cent vertices and edges, it cannot support algorithms where a vertex
needs to communicate with a non-neighbor. Another limitation of
GraphLab is that it does not support graph mutations.

GraphLab 2.2, i.e., PowerGraph [10], partitions a graph by edges
rather than by vertices in order to address imbalanced workload
caused by high-degree vertices. However, a more complicated edge-
centric Gather-Apply-Scatter (GAS) computing model should be
used, which compromises user-friendliness.

PRAM. The PRAM model assumes that there are many processors
and a shared memory. PRAM algorithms have been proposed for
computing CCs [18], BCCs [20], and SCCs [2, 3, 9]. However, the
PRAM model is not suitable for Cloud environments that are built
on shared-nothing architectures. Furthermore, unlike Pregel and
MapReduce, PRAM algorithms are not fault tolerant. However, the
ideas of many PRAM algorithms can be applied to design efficient
Pregel algorithms as we shall demonstrate in later sections.

3. PRACTICAL PREGEL ALGORITHMS
We now define some frequently used notations and introduce the

notion of practical Pregel algorithms.

Notations. Given a graph G = (V,E), we denote the number of
vertices |V | by n, and the number of edges |E| by m. We also
denote the diameter of G by δ. For an undirected graph, we denote
the set of neighbors of a vertex v by Γ(v) and the degree of v
by d(v) = |Γ(v)|. For a directed graph, we denote the set of in-
neighbors and out-neighbors of v by Γin(v) and Γout(v), and the
in-degree and out-degree of v by din(v) = |Γin(v)| and dout(v) =
|Γout(v)|, respectively.

A Pregel algorithm is called a balanced practical Pregel algo-
rithm (BPPA) if it satisfies the following constraints:

1. Linear space usage: each vertex v usesO(d(v)) (orO(din(v)+
dout(v))) space of storage.

2. Linear computation cost: the time complexity of the compute()
function for each vertex v isO(d(v)) (orO(din(v)+dout(v))).

3. Linear communication cost: at each superstep, the size of
the messages sent/received by each vertex v is O(d(v)) (or
O(din(v) + dout(v))).

4. At most logarithmic number of rounds: the algorithm termi-
nates after O(logn) supersteps.

Constraints 1-3 offers good load balancing and linear cost at each
superstep, while Constraint 4 controls the total running time. As we
shall see in later sections, some algorithms satisfying Constraints 1-
3 require O(δ) rounds. Since many large real graphs have a small
diameter δ, especially for social networks due to the small world
phenomenon, we consider algorithms requiring O(δ) rounds also
satisfying Constraint 4 if δ ≤ logn for the input graph.

For some problems, the per-vertex requirements of BPPA can
be too strict, and we can only achieve overall linear space usage,
computation and communication cost (still in O(logn) rounds).
We call a Pregel algorithm that satisfies these constraints simply as
a practical Pregel algorithm (PPA).

Motivation. We define BPPA and PPA in order to character-
ize a set of Pregel algorithms that can run efficiently in practice.
Apart from the algorithms proposed in this paper, other Pregel al-
gorithms, e.g., the four demo algorithms in the Pregel paper [12],
also have these characteristics (we can show that they are BPPAs):
PageRank (constant supersteps), single-source shortest paths (O(δ)
supersteps), bipartite matching (O(logn) supersteps), and semi-
clustering (constant supersteps). However, these existing Pregel al-
gorithms are designed on a best-effort basis and there is no formal
performance requirement to be met or design rule to be followed.
For example, while the Pregel algorithm developed in [13] for di-
ameter estimation is anO(δ)-superstep BPPA, the Pregel algorithm
for triangle counting and clustering coefficient computation in [13]
is not a PPA. Specifically, in superstep 1 of the triangle counting
algorithm, a vertex sends a message for each pair of neighbors,



leading to a quadratic number of messages to be buffered and sent.
With the concept of PPA/BPPA in mind, users of the triangle count-
ing algorithm can then be aware of the scalability limitation when
applying this algorithm. The requirements of PPAs/BPPAs also
serve as a guideline for programmers/researchers who want to de-
velop efficient Pregel algorithms, and they may use existing PPAs
as building blocks in their algorithms.

In the next three sections, we present PPAs/BPPAs for three fun-
damental graph connectivity problems. We also demonstrate how
the PPAs/BPPAs of some fundamental graph problems can be used
as building blocks to develop a more sophisticated PPA/BPPA for
solving other graph problems such as computing BCCs.

4. CONNECTED COMPONENTS
In this section, we present two Pregel algorithms for computing

CCs. Section 4.1 presents a BPPA that requires O(δ) supersteps.
This algorithm works well on many real world graphs with a small
diameter. However, it can be very slow on large-diameter graphs,
such as spatial networks for which δ ≈ O(

√
n). We present an

O(logn)-superstep PPA in Section 4.2 to handle such graphs.

4.1 The Hash-Min PPA
Before presenting theO(δ)-superstep BPPA for computing CCs,

we first define some graph notations. We assume that all vertices
in a graph G are assigned a unique ID. For convenience of discus-
sion, we simply use v to refer to the ID of vertex v, and thus, the
expression u < v means that u’s vertex ID is smaller than v’s. We
define the color of a (strongly) connected component in G to be
the smallest vertex among all vertices in the component. The color
of a vertex v, denoted by color(v), is defined as the color of the
component that contains v, and so, all vertices in G with the same
color constitute a component.

A MapReduce algorithm, called Hash-Min, was proposed for
computing CCs recently [14]. The idea of the algorithm is to broad-
cast the smallest vertex (ID) seen so far by each vertex v, denoted
by min(v); when the process converges, min(v) = color(v) for
all v. We now propose a BPPA counterpart as follows.

In Superstep 1, each vertex v initializes min(v) as the smallest
vertex in the set ({v} ∪ Γ(v)), sends min(v) to all v’s neighbors
and votes to halt. In each subsequent superstep, a vertex v obtains
the smallest vertex from the incoming messages, denoted by u. If
u < v, v setsmin(v) = u and sendsmin(v) it to all its neighbors.
Finally, v votes to halt.

We prove that the algorithm is a BPPA as follows. For any CC,
it takes at most δ supersteps for the ID of the smallest vertex to
reach all the vertices in the CC, and in each superstep, each vertex v
takes at most O(d(v)) time to compute min(v) and sends/receives
O(d(v)) messages each using O(1) space.

Three other MapReduce algorithms were also proposed in [14]
for computing CCs. However, they require that each vertex main-
tain a set whose size can be as large as the size of its CC, and that
the whole set be sent to some vertices. Thus, they cannot be trans-
lated into efficient Pregel implementations due to the highly skewed
communication and computation, and the excessive space cost.

4.2 The S-V PPA
Our Contributions. We propose anO(logn)-superstep PPA based
on the S-V algorithm [18]. We note that the state-of-the-art dis-
tributed algorithms can only achieve O(logn) iterations in expec-
tation on some types of graphs [14], while [14] also claims that the
requirement of concurrent writes makes the S-V algorithm difficult
to be translated to MapReduce (similarly to Pregel). We show that
a direct translation of the S-V algorithm to Pregel is incorrect, and
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then change the algorithmic logic to obtain an O(logn)-superstep
PPA for CC computation.

Algorithm Overview. In the S-V algorithm, each vertex u main-
tains a pointer D[u]. Initially, D[u] = u, forming a self loop as
shown Figure 1(a). Throughout the algorithm, vertices are orga-
nized by a forest such that all vertices in each tree in the forest
belong to the same CC. The tree definition is relaxed a bit here to
allow the tree rootw to have a self-loop (see Figures 1(b) and 1(c)),
i.e., D[w] = w; while D[v] of any other vertex v in the tree points
to v’s parent.

The S-V algorithm proceeds in rounds, and in each round, the
pointers are updated in three steps (illustrated in Figure 2): (1)tree
hooking: for each edge (u, v), if u’s parentw = D[u] is a tree root,
hookw as a child of v’s parentD[v] (i.e., merge the tree rooted atw
into v’s tree); (2)star hooking: for each edge (u, v), if u is in a star
(see Figure 1(c) for an example of star), hook the star to v’s tree as
Step (1) does; (3)shortcutting: for each vertex v, move vertex v and
its descendants closer to the tree root, by hooking v to the parent of
v’s parent, i.e., setting D[v] = D[D[v]]. The algorithm ends when
every vertex is in a star.

We perform tree hooking in Step (1) only if D[v] < D[u], so
that if u’s tree is hooked to v’s tree due to edge (u, v), then edge
(v, u) will not hook v’s tree to u’s tree again.

The condition “D[v] < D[u]” is not required for star hooking,
since if u’s tree is hooked to v’s tree, v’s tree cannot be a star
(e.g., in Figure 2(b), after hooking, u is two hops away from x).
However, in Pregel’s computing model, Step (2) cannot be pro-
cessed. Consider the graph shown in Figure 3(a), and suppose that
we obtain the three stars in Figure 3(b) right after Step (1). If the
one-directional condition is not required, setting D[D[u]] as D[v]
makesD[1] = 2,D[2] = 3 andD[3] = 1 through the edges (4, 5),
(5, 6) and (6, 4), thus forming a cycle and violating the tree forma-
tion required by the algorithm. Such a problem does not exist in the
PRAM model since the values of D[u] and D[v] are immediately
updated after each write operation, while in Pregel the values are
those received from the previous superstep.



To address this problem, we examine the algorithm logic in Pregel
execution and find that if we always require va < vb when setting
D[va] ← vb during hooking, we can prove that the pointer values
monotonically decrease, and thus D[v] = color(v) for any vertex
v when the algorithm terminates. Based on this result, we change
the algorithm by requiring “D[v] < D[u]” for star hooking. Then,
the S-V algorithm can be translated into a Pregel algorithm by ex-
changing messages to update the pointers D[.] following the three
steps in Figure 2, until every vertex v is in a star. Due to limited
space, we present the details of the algorithm in Appendix A of our
technical report [24].

The S-V based Pregel algorithm is an O(logn)-superstep PPA,
which can be proved as the original S-V algorithm computes CCs
in O(logn) rounds [18], where each round is implemented in a
constant number of supersteps. However, the algorithm is not a
BPPA since a vertex v may become the parent of more than d(v)
vertices and hence receives/sends more than d(v) messages in a
superstep, though the overall number of messages in each superstep
is always bounded by O(n).

The S-V algorithm can also be extended to obtain an O(logn)-
superstep PPA for computing the spanning tree, the details of which
can be found in Appendix A of [24].

5. BI-CONNECTED COMPONENTS
Our PPA for computing BCCs is based on the idea of the PRAM

algorithm in [20], but we make the following new contributions.

Our Contributions. To our knowledge, the problem of computing
BCCs in Pregel has never been studied before. Thus, it is important
to show that a Pregel algorithm with strong performance guaran-
tee exists for this problem, which we will establish by proposing a
PPA for computing BCCs. Second, existing studies on designing
Pregel algorithms [14, 13] often neglect the rich body of PRAM
algorithms. Our PPA for computing BCCs demonstrates that some
ideas from the PRAM algorithms can be applied to design Pregel
algorithms. Third, though the main idea is based on [20], the de-
sign of our PPA for BCC computation is non-trivial. Specifically,
our BCC algorithm is composed of a number of building blocks,
and to ensure that our final algorithm is a PPA, we devise a PPA
for each building block. Finally, these building blocks used in our
BCC algorithm are themselves fundamental graph operations that
are useful to the design of many other distributed graph algorithms.
Therefore, we study them in greater depth and carefully design a
PPA for each of them, which are often much simpler than the exist-
ing PRAM algorithms.

5.1 BCC and Its PRAM Algorithm
Bi-connected Component (BCC). A BCC of an undirected graph
G is a maximal subgraph ofG that remains connected after remov-
ing one arbitrary vertex. We illustrate the concept of BCC using
the graph shown in Figure 4, where the dashed edges constitute
one BCC, and the solid edges constitute another. Let R be the
equivalence relation on the set of edges of G such that e1Re2 iff
e1 = e2 or e1 and e2 appear together in some simple cycle, then
R defines the BCCs of G. For example, in Figure 4, edges (4, 5)
and (5, 6) are in cycle (4, 5, 6, 4), but there is no simple cycle con-
taining both (4, 5) and (1, 2). A vertex is called an articulation
point if it belongs to more than one BCC, such as vertex 1 in Fig-
ure 4. The removal of an articulation point disconnects the con-
nected components containing it.

Tarjan-Vishkin’s PRAM Algorithm. If we construct a new graph
G′ whose vertices correspond to the edges ofG, and an edge (e1, e2)
exists in G′ iff e1Re2, then the CCs of G′ correspond to the BCCs
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ofG. However, the number of edges inG′ can be superlinear tom.
Tarjan-Vishkin’s (T-V) PRAM algorithm [20] constructs a concise
graph G∗ containing a small subset of the edges in G′, whose size
is bounded by O(m). They prove that it is sufficient to compute
the CCs of G∗ to obtain the BCCs of G.

Since our PPA for computing BCCs is also based on this idea, we
first present the definition of G∗ below. Assume that G = (V,E)
is connected and T is a spanning tree of G. Also, assume that T
is rooted and each vertex u in T is assigned a pre-order number
pre(u). Let p(u) be the parent of a vertex u in T . We construct
G∗ = (V ∗, E∗) as follows. First, we set V ∗ = E. Then, we add
an edge (e1, e2) to E∗, where e1, e2 ∈ E, iff e1 and e2 satisfy one
of the following three cases:

• Case 1: e1 = (p(u), u) is a tree edge in T , and e2 = (v, u) is
a non-tree edge (i.e., e2 is not in T ) with pre(v) < pre(u).

• Case 2: e1 = (p(u), u) and e2 = (p(v), v) are two tree
edges in T , u and v have no ascendant-descendant relation-
ship in T , and (u, v) ∈ E.

• Case 3: e1 = (p(u), u) and e2 = (p(p(u)), p(u)) are two
tree edges in T , and ∃(x, y) ∈ E s.t. x is a non-descendant
of p(u) in T and y is a descendant of u in T .

Figure 5 illustrates the three cases, where solid edges are tree
edges in T , and dashed edges are non-tree edges in (G − T ). The
vertices are labeled by their pre-order numbers. Case 1 is shown
by e1 = (5, 6) and e2 = (3, 6) in Figure 5(a). Note that e1Re2
since e1 and e2 are in a simple cycle 〈1, 2, 3, 6, 5, 1〉. Case 2 is also
shown in Figure 5(a) by e1 = (5, 6) and e2 = (2, 3), and also e1
and e2 are in the same simple cycle. Case 3 is shown in Figure 5(b)
by e1 = (5, 6) and e2 = (1, 5), where e1 and e2 are in the simple
cycle 〈1, 2, 3, 7, 6, 5, 1〉.

Each non-tree edge (u, v) of G introduces at most one edge into
G∗ due to Case 1 (and Case 2), and each tree-edge (p(u), u) intro-
duces at most one edge due to Case 3. Therefore, |E∗| = O(m).

5.2 PPA for Computing BCCs
Our PPA for computing BCCs is also based on the idea of Tarjan-

Vishkin’s algorithm, i.e., to construct the concise graph G∗ and
then compute the CCs ofG∗ to obtain the BCCs ofG. Without loss
of generality, we assume G is connected, as BCC computation in
different CCs is independent and can be parallelized. To construct
G∗, we first propose a set of building blocks in Sections 5.2.1-
5.2.4, and then in Section 5.2.5 we put everything together to obtain
our final PPA for computing BCCs.



5.2.1 Spanning Tree Computation
To construct G∗, we first need a spanning tree of G, denoted by

T . We present an O(δ)-superstep BPPA for spanning tree compu-
tation as follows.

The algorithm performs breadth-first search (BFS) and computes
a spanning tree over an unweighted graph G from a source vertex
s. Each vertex v inGmaintains two fields, the parent of v, denoted
by p(v); and the shortest-path distance (or BFS level) of v from s,
denoted by dist(v). Initially, only s is active with p(s) = null and
dist(s) = 0, and dist(v) = ∞ for all other v. In Superstep 1,
s sends 〈s, dist(s)〉 to all its neighbors, and votes to halt. In each
subsequent superstep, if a vertex v receives any message, it first
checks whether v has been visited before (i.e., whether dist(v) <
∞): if not, it updates dist(v) = dist(u) + 1 and p(v) = u with
an arbitrary message 〈u, dist(u)〉 received, and sends 〈v, dist(v)〉
to all v’s neighbors. Finally, v votes to halt.

When the algorithm terminates, we obtain a tree edge (p(v), v)
from each vertex v 6= s, which constitute a spanning tree rooted at
s. It is easy to see that the algorithm is anO(δ)-superstep BPPA. In
the case if G is disconnected, we first compute color(v) for each
vertex v using the algorithm described in Section 4.1, and then pick
the vertex s with s = color(s) as the source for each CC. Since,
multi-source BFS is done in parallel, the overall number of super-
steps is still O(δ). For processing graphs with a large diameter δ,
as mentioned in Section 4.2, the S-V algorithm can be extended to
give an O(logn)-superstep PPA to compute the spanning tree T .

5.2.2 Pre-order Numbering
Consider the three cases for constructing the edges ofG∗ in Sec-

tion 5.1. In Case 1, we need the pre-order number of each vertex
v (i.e., pre(v)) in the spanning tree T . We present an O(logn)-
superstep BPPA to compute the pre-order numbers for all vertices
in T . We also propose a symmetric BPPA for computing post-order
numbers.

To compute the pre-order numbering, we first compute a Euler
tour of the spanning tree T . A Euler tour is a representation of a
tree which is useful in many parallel graph algorithms. The tree
is viewed as a directed graph, where each tree edge (u, v) is con-
sidered as two directed edges (u, v) and (v, u), and a Euler tour
of the tree is simply a Eulerian circuit of the directed graph, i.e., a
trail that visits every edge exactly once, and ends at the same vertex
where it starts.

We present an O(logn)-superstep BPPA to compute the Euler
tour of a tree T as follows.

BPPA for Computing Euler Tour. Assume that the neighbors of
each vertex v are sorted according to their IDs, which is common
for an adjacency list representation of a graph. For a vertex v, let
first(v) and last(v) be the first and last neighbor of v in the sorted
order; and for each neighbor u of v, if u 6= last(v), let nextv(u)
be the neighbor of v next to u in the sorted adjacency list. We
further define nextv(last(v)) = first(v). Consider the example
shown in Figure 6. For the adjacency list of vertex 4, we have
first(4) = 0, last(4) = 6, next4(0) = 5, next4(5) = 6 and
next4(6) = 0.

If we translate nextv(u) = w as specifying that the edge next
to (u, v) is (v, w), we obtain a Euler tour of the tree. Referring to
the example in Figure 6 again, where a Euler tour that starts and
ends at vertex 0 is given. The next edge of (2, 1) is (1, 3), be-
cause next1(2) = 3, while the next edge of (6, 4) is (4, 0) because
next4(6) = 0. In fact, starting from any vertex v and any neighbor
u of v, 〈(v, x = nextv(u)), (x, y = nextx(v)), (y, nexty(x)),
. . ., (u, v)〉 defines a Euler tour.
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Figure 6: Euler tour

We present a 2-superstep BPPA to construct the Euler tour as fol-
lows: In Superstep 1, each vertex v sends message 〈u, nextv(u)〉
to each neighbor u; in Supertep 2, each vertex u receives the mes-
sage 〈u, nextv(u)〉 sent from each neighbor v, and stores nextv(u)
with v in u’s adjacency list. When the algorithm finishes, for each
vertex u and each neighbor v, the next edge of (u, v) is obtained as
(v, nextv(u)).

The algorithm requires a constant number of supersteps, and in
each superstep, each vertex v sends/receives O(d(v)) messages
(each using O(1) space). By implementing nextv(.) as a hash
table associated with v, we can obtain nextv(u) in O(1) expected
time given u.

After obtaining the Euler tour of T , which is a cycle of edges,
we break it at some edge to obtain a list of edges. We then compute
the pre-order and post-order numbers of the vertices in T from the
list, using the list ranking operation. Since our BPPAs for pre-order
and post-order numbering are based on list ranking, we first intro-
duce the concept of list ranking and present an O(logn)-superstep
BPPA for list ranking below.

BPPA for List Ranking. Consider a linked list L with n ob-
jects, where each object v is associated with a value val(v) and a
link to its predecessor pred(v). The object v at the head of L has
pred(v) = null . For each object v inL, let us define sum(v) to be
the sum of the values of all the objects from v following the prede-
cessor link to the head. The list ranking problem computes sum(v)
for each object v. If val(v) = 1 for each v in L, then sum(v) is
simply the rank of v in the list, i.e., the number of objects preceding
v plus 1.

In list ranking, the objects in L are given in arbitrary order. We
may regard L simply as a directed graph consisting of a single sim-
ple path. Albeit simple, list ranking is an important problem in
parallel computing because it serves as a building block to many
other parallel algorithms.

We now describe our BPPA for list ranking. Initially, each ver-
tex v assigns sum(v) = val(v). Then in each round, each ver-
tex v does the following: If pred(v) 6= null , v sets sum(v) =
sum(v) + sum(pred(v)) and pred(v) = pred(pred(v)); oth-
erwise, v votes to halt. The if-branch is accomplished in three
supersteps: (1)v sends a message to u = pred(v) requesting for
the values of sum(u) and pred(u); (2)u sends back the requested
values to v; and (3)v updates sum(v) and pred(v). This process
repeats until pred(v) = null for every vertex v, at which point all
vertices vote to halt and we have sum(v) as desired.

Figure 7 illustrates how the algorithm works. Initially, objects
v1–v5 form a linked list with sum(vi) = val(vi) = 1 and pred(vi)
= vi−1. Let us now focus on v5. In Round 1, we have pred(v5) =
v4 and so we set sum(v5) = sum(v5) + sum(v4) = 1 + 1 = 2
and pred(v5) = pred(v4) = v3. One can verify the states of the
other vertices similarly. In Round 2, we have pred(v5) = v3 and
so we set sum(v5) = sum(v5) + sum(v3) = 2 + 2 = 4 and
pred(v5) = pred(v3) = v1. In Round 3, we have pred(v5) = v1
and so we set sum(v5) = sum(v5) + sum(v1)=4 + 1=5 and
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pred(v5) = pred(v1) = null . We can prove by induction that in
Round i, we set sum(vj) =

∑j

k=j−2i+1
val(vk) and pred(vj) =

vj−2i . Furthermore, each object vj sends at most one message to
vj−2i−1 and receives at most one message from vj+2i−1 . The al-
gorithm is a BPPA because it terminates in logn rounds, and each
object sends/receives at most one message per round.

Let us assume that we already obtain the Euler tour P of the
spanning tree starting from s, given by P = 〈(s, v1), (v1, v2),
. . ., (vk−1, vk), (vk, s)〉. We break the cycle into a list by setting
pred(s, v1) = null . We now consider how to compute the pre-
order and post-order numbers from the list using list ranking.

Pre-Order and Post-Order Numbering. Depth-first traversal of
a tree T generates pre-order or post-order numbers for the vertices
in a tree, and the numbers are useful in many applications, such as
deciding the ancestor-descendant relationship of two tree vertices,
which we discuss in Section 5.2.3. Let pre(v) and post(v) be the
pre-order and post-order number of each vertex v in T , respec-
tively. We present a BPPA for computing pre-order and post-order
numbers from the Euler tour P of the tree T below.

We formulate a list ranking problem by treating each edge e ∈ P
as a vertex and setting val(e) = 1. After obtaining sum(e) for
each e ∈ P , we mark the edges in P as forward/backward edges
using a two-superstep BPPA: in Superstep 1, each vertex e = (u, v)
sends sum(e) to e′ = (v, u); in Superstep 2, each vertex e′ =
(v, u) receives sum(e) from e = (u, v), sets e′ itself as a forward
edge if sum(e′) < sum(e), and a backward edge otherwise. In
Figure 6, edge (1, 2) is a forward edge because its rank (i.e., 2) is
smaller than that of (2, 1) (i.e., 3), while edge (4, 0) is a backward
edge since its rank (i.e., 12) is larger than that of (0, 4) (i.e., 7).

To compute pre(v), we run a second round of list ranking by
setting val(e) = 1 for each forward edge e in P and val(e′) = 0
for each backward edge e′. Then, for each forward edge e = (u, v),
we get pre(v) = sum(e) for vertex v. We set pre(s) = 0 for tree
root s. For example, Figure 8(a) shows the forward edges (u, v)
in the order in P , where vertices are already labeled with pre-order
numbers. Obviously, the rank of (u, v) gives pre(v).

To compute post(v), we run list ranking by setting val(e) = 0
for each forward edge e and val(e′) = 1 for each backward edge e′

in P . Then, for each backward edge e′ = (v, u), we get post(v) =
sum(e′) for vertex v. We set post(s) = n − 1 for tree root s,
where n is the number of vertices in the tree. If n is not known,

we can easily compute n using an aggregator in Pregel with each
vertex providing a value of 1. (In the more general case where G
is a forest, the aggregator counts the number of vertices for each
tree/component). For example, Figure 8(b) shows the backward
edges (v, u) in the order in P , and vertices are relabeled with post-
order numbers. Obviously, the rank of (v, u) gives post(v).

The algorithm correctly computes pre(v)/post(v) for all ver-
tices v, because each vertex v in the tree (except root s) has exactly
one parent u defined by the forward/backward edge (u, v)/(v, u).
Finally, the proof for BPPA follows directly from the fact that both
Euler tour and list ranking can be computed by BPPAs.

5.2.3 Ancestor-Descendant Query
In Case 2 for constructing the edges of G∗, we need to decide

whether two vertices u and v have ancestor-descendant relationship
in the spanning tree T .

Let pre(v) be the pre-order number of v and nd(v) be the num-
ber of descendants of v in the tree. We show that if pre(v) and
nd(v) is available for each vertex v in the tree, then an ancestor-
descendant query can be answered in O(1) time. Given u and v,
following the definition of pre-order numbering, we have: u is an
ancestor of v iff pre(u) ≤ pre(v) < pre(u)+nd(u). For vertex 1
in Figure 8(a), we have pre(1) = 1 and nd(1) = 3, and therefore
any vertex v with 1 ≤ pre(v)<1+3 (i.e., vertices 1, 2 and 3) is a
descendants of vertex 1.

We have presented a BPPA to compute pre(v) in Section 5.2.2.
We now show that nd(v) can be obtained in the same process:
for each forward edge e = (u, v), we set nd(v) = sum(e′) −
sum(e) + 1 where e′ is the backward edge (v, u). For tree root s,
we set nd(s) = n. For example, we compute nd(1) = sum(1, 0)−
sum(0, 1) + 1 = 3− 1 + 1 = 3 for vertex 1 in Figure 8(a).

5.2.4 Case 3 Condition Checking
With the PPA/BPPA proposed in the previous subsections, Case 1

and Case 2 in Section 5.1 can now be checked in a constant num-
ber of supersteps by exchanging messages with neighbors. Case 3,
however, is far more complicated to handle as vertices other than
direct neighbors are involved.

We now develop a PPA for handling Case 3 as follows. We first
need to compute two more fields for each vertex v, which are de-
fined recursively as follows:

• min(v): the minimum of (1)pre(v), (2)min(u) for all of
v’s children u, and (3)pre(w) for all non-tree edges (v, w).

• max(v): the maximum of (1)pre(v), (2)max(u) for all of
v’s children u, and (3)pre(w) for all non-tree edges (v, w).

Let desc(v) be the descendants of v (including v itself) and
Γdesc(v) be the set of vertices connected to any vertex in desc(v)
by a non-tree edge. Intuitively,min(v) (ormax(v)) is the smallest
(or largest) pre-order number among desc(v) ∪ Γdesc(v).

In Case 3, (x, y) exists iff x ∈ Γdesc(u) − desc(v). Since x is
not a descendant of p(u), either pre(x) < pre(p(u)) which im-
plies min(u) < pre(p(u)), or pre(x) ≥ pre(p(u)) + nd(p(u))
which implies max(u) ≥ pre(p(u)) + nd(p(u)). To summa-
rize, Case 3 holds for u iff min(u) < pre(p(u)) or max(u) ≥
pre(p(u)) + nd(p(u)).

When pre(v), nd(v), min(v) and max(v) are available for
each vertex v, all the three cases can be handled using O(1) su-
persteps. We now show how to compute min(v) for each v by a
PPA in O(logn) supersteps (computing max(v) is symmetric).

For ease of presentation, let us simply use v to denote pre(v).
We further define local(v) to be the minimum among v and all the
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neighbors connected to v by a non-tree edge. Note that min(v) is
just the minimum of local(u) among all of v’s descendants u.

We compute min(v) in O(logn) rounds. At the beginning of
the i-th round, each vertex v = c · 2i (c is a natural number)
maintains a field global(c · 2i) = min{local(u) : c · 2i ≤ u <
(c+1)2i}. Then in the (i+1)-th round, for each vertex v = c·2i+1

we can simply update global(v) = min{global(v), global(v +
2i)}, i.e., merging the results from two consecutive segments of
length 2i. Here, each round can be done by a three-superstep PPA:
(1) each v requests global(v + 2i) from (v + 2i); (2) (v + 2i) re-
sponds by sending global(v+2i) to v; (3) v receives global(v+2i)
to update global(v). Initially, global(v) = local(v) for each v,
and local(v) can be computed similarly, by requesting pre(u) from
each neighbor u connected to v by a non-tree edge.

Given a vertex v, the descendants of v in T are {v, v+1, . . . , v+
nd(v)−1}. At the beginning of the i-th round, we define little(v)
(and respectively, big(v)) to be the first (and respectively, the last)
descendant that is a multiple of 2i. Figure 9 illustrates the concept
of little(v) and big(v).

We maintain the following invariant for each round:

min(v) = min{local(u) : u ∈ [v, little(v)) ∪
[big(v), v + nd(v)− 1]}. (1)

Obviously, the correct value ofmin(v) is computed when little(v)
= big(v), which must happen for some value of i as i goes from 0
to blog2 nc. We perform the following operations for each v in the
i-th round, which maintains the invariant given by Equation (1):

• If little(v) < big(v) and little(v) is not a multiple of 2i+1,
set min(v) = min{min(v), global(little(v))}, and then
set little(v) = little(v) + 2i.

• If little(v) < big(v) and big(v) is not a multiple of 2i+1,
setmin(v) = min{min(v), global(big(v)−2i)}, and then
set big(v) = big(v)− 2i.

We do not update little(v) (or big(v)) if it is a multiple of 2i+1,
so that in the (i+ 1)-th round it is aligned with c · 2i+1. We update
little(v), big(v), andmin(v) by Pregel operations similar to those
for updating global(v).

5.2.5 Integration of Building Blocks
Refer to Section 5.1 again, when computing the CCs of G∗, we

only need to consider those vertices of G∗ that correspond to the
tree edges in T . This is because other vertices of G∗ correspond to
the non-tree edges e2 of Case 1, and hence can be assigned to the
CC of the corresponding e1 later on.

We now integrate all the building blocks into a PPA for com-
puting BCCs. The algorithm consists of a sequence of PPA tasks:
(1)HashMin: to compute color(v) for all v ∈ V using the BPPA of
Section 4.1; (2)BFS or S-V: to compute a spanning forest of G us-
ing the BPPA of Section 5.2.1 with sources {s ∈ V |color(s) = s};
alternatively, we may obtain the spanning forest using the S-V al-
gorithm of Section 4.2, denoted by S-V; (3)EulerTour: to con-
struct Euler tours from the spanning forest using the BPPA of Sec-
tion 5.2.2; (4)ListRank1: to break each Euler tour into a list and
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mark each edge as forward/backward using list ranking (see Sec-
tion 5.2.2); (5)ListRank2: using the edge forward/backward marks
to compute pre(v) and nd(v) for each v ∈ V using list ranking
(see Section 5.2.2); (6)MinMax: to compute min(v) and max(v)
for each v ∈ V using the PPA of Section 5.2.4; (7)AuxGraph: to
construct G∗ using pre(v), nd(v), min(v) and max(v) informa-
tion; this is a constant-superstep BPPA since all three cases for edge
construction can be checked in a constant number of supersteps.
(8)HashMin2 or S-V2: to compute the CCs of G∗ using HashMin,
but only consider tree edges; alternatively, we may use the S-V al-
gorithm for CC computation; (9)Case1Mark: to decide the BCCs
of the non-tree edges in G∗ using Case 1.

This algorithm is a PPA since each of its tasks is a BPPA/PPA.

6. STRONGLY CONNECTED COMPONENTS
In this section, we present two novel Pregel algorithms that com-

pute strongly connected components (SCCs) from a directed graph
G = (V,E). Let SCC(v) be the SCC that contains v, and let
Out(v) (and In(v)) be the set of vertices that can be reached
from v (and respectively, that can reach v) in G. Some PRAM
algorithms [9, 3, 2] were designed based on the observation that
SCC(v) = Out(v) ∩ In(v) (see Figure 10(a)). They compute
Out(v) and In(v) by forward/backward BFS from source v that is
randomly picked fromG. This process then repeats onG[Out(v)−
SCC(v)], G[In(v) − SCC(v)] and G[V − (Out(v) ∪ In(v))],
where G[X] denotes the subgraph of G induced by vertex set X .
The correctness is guaranteed by the property that any remaining
SCC must be in one of these subgraphs.

Our Contributions. It is difficult to translate the PRAM algo-
rithms to work in Pregel. Thus, we design two Pregel algorithms
based on label propagation. The first algorithm propagates the
smallest vertex (ID) that every vertex has seen so far, while the
second algorithm propagates multiple source vertices to speed up
SCC computation. We also noticed a very recent algorithm that
computes SCCs in Pregel [17], which shares a similar idea as our
first algorithm. However, their algorithm performs label propaga-
tion for only one round, followed by a serial computation by the
master machine, which is called FCS (Finishing Computations Se-
rially). For processing large graphs, it is possible that the remaining
graph after one round of computation is still too large to fit in the
memory of a single machine. In contrast, we introduce graph de-
composition, which allows us to run multiple rounds of label prop-
agation. Moreover, our Optimization 2 described at the end of Sec-
tion 6.1 performs a processing similar to FCS in [17], but it is fully
distributed (by utilizing the property of recursive graph decompo-
sition) instead of computation at the master machine. Finally, the
idea used by our second SCC algorithm is new, which overcomes a
weakness of our first algorithm.



Before describing our SCC algorithms, we first present a BPPA
for graph decomposition which is used in our algorithms.

Graph Decomposition. Given a partition of V , denoted by V1,
V2, . . ., V`, we decompose G into G[V1], G[V2], . . ., G[V`] in
two supersteps (assume that each vertex v contains a label i in-
dicating v ∈ Vi): (1)each vertex notifies all its in-neighbors and
out-neighbors about its label i; (2)each vertex checks the incoming
messages, removes the edges from/to the vertices whose label is
different from its own label, and votes to halt.

6.1 Min-Label Algorithm
We first describe the Pregel operation for min-label propagation,

where each vertex v maintains two labels minf (v) and minb(v).

Forward Min-Label Propagation. (1)Each vertex v initializes
minf (v) = v, propagates minf (v) to all v’s out-neighbors, and
votes to halt; (2)when a vertex v receives a set of messages from its
in-neighbors Γin(v), let min∗ be the smallest message received,
then if min∗ < minf (v), v updates minf (v) = min∗ and prop-
agates minf (v) to all v’s out-neighbors; v votes to halt at last. We
repeat Step (2) until all vertices vote to halt.

Backward Min-Label Propagation. This operation is done after
forward min-label propagation. The differences are that (1)initially,
only vertices v satisfying v = minf (v) are active withminb(v) =
v, while for the other vertices u, minb(u) = ∞; (2)each active
vertex v propagates minb(v) towards all v’s in-neighbors.

Both operations are BPPAs with O(δ) supersteps. After the for-
ward and then backward min-label propagations, each vertex v ob-
tains a label pair (minf (v),minb(v)). This labeling has the fol-
lowing property (the proof can be found in Appendix B of [24]):

LEMMA 1. Let V(i,j) = {v ∈ V : (minf (v),minb(v)) =
(i, j)}. Then, (i)any SCC is a subset of some V(i,j), and (ii)V(i,i) is
a SCC with color i.

The min-label algorithm repeats the following operations: (1)for-
ward min-label propagation; (2)backward min-label propagation;
(3)an aggregator collects label pairs (i, j), and assigns a unique id
ID to each V(i,j); then graph decomposition is performed to re-
move edges crossing different G[VID]; finally, we mark each ver-
tex v with label (i, i) to indicate that its SCC is found.

In each step, only unmarked vertices are active, and thus vertices
do not participate in later rounds once its SCC is determined.

Each round of the algorithm refines the vertex partition of the
previous round. Since all the three steps are BPPAs, each round of
the min-label algorithm is a BPPA. The algorithm terminates once
all vertices are marked.

The correctness of the algorithm follows directly from Lemma 1.
We now analyze the number of rounds the min-label algorithm re-
quires. Given a graph G, if we contract each SCC into a super-
vertex, we obtain a DAG in which an edge directs from one super-
vertex (representing a SCC, SCCi) to another super-vertex (repre-
senting another SCC, SCCj) iff there is an edge from some vertex
in SCCi to some vertex in SCCj . Let L be the longest path length
in the DAG, then we have the following bound (the proof can be
found in Appendix B of [24]).

THEOREM 1. The min-label algorithm runs for at mostL rounds.

The above bound is very loose, and often, more than one SCC
is marked per DAG path in a round. We illustrate it using Fig-
ure 10(b), where there is a DAG path P = 〈SCC1, SCC2, SCC3,
SCC4, SCC5〉, and v1 is the smallest vertex in G. Obviously,

for any vertex v in SCC4–SCC5, minf (v) = v1. Since v1 is
picked as a source for backward propagation, for any vertex v in
SCC1–SCC4, minb(v) = v1. Thus, any vertex v ∈ SCC4 has
label pair (v1, v1) and is marked. Now consider the sub-path be-
fore SCC4, i.e., 〈SCC1, SCC2, SCC3〉, and assume v2 ∈ SCC2

is the second smallest vertex in G, then a similar reasoning shows
that SCC2 is found as V(v2,v2). In this way, P is quickly broken
into many subpaths, each can be processed in parallel, and hence in
practice the number of rounds needed can be much less than L.

In our implementation, we further perform two optimizations:

Optimization 1: Removing Trivial SCCs. If the in-degree or out-
degree of a vertex v is 0, then v itself constitutes a trivial SCC and
can be directly marked to avoid useless label propagation. We mark
trivial SCCs before forward min-label propagation in each round.

We now describe a Pregel algorithm to mark all vertices with
in-degree 0. Initially, each vertex v with in-degree 0 marks itself,
sends itself to all out-neighbors and votes to halt. In subsequent su-
persteps, each vertex v removes its in-edges from the in-neighbors
that appears in the incoming messages, and checks whether its in-
degree is 0. If so, the vertex marks itself and sends itself to all
out-neighbors. Finally, the vertex votes to halt. We also mark ver-
tices with out-degree 0 in each superstep in a symmetric manner.

The algorithm takes only a small number of supersteps in prac-
tice (as shown by experiments in Section 7), since real world graphs
(e.g., social networks) have a dense core, and the limited num-
ber of trivial SCCs only exist in the sparse boundary regions of
the graphs. Furthermore, many vertices with zero in-degree/out-
degree are marked as trivial SCCs in parallel in each superstep. On
the other hand, removing trivial SCCs prevents them from partici-
pating in min-label propagation, which may otherwise degrade the
algorithm effectiveness if some trivial SCC vertex has a small ID.

Optimization 2: Early Termination. We do not need to run the
algorithm until all vertices are marked as a vertex of a SCC found.
We also mark a vertex v ∈ G[VID] if |VID| is smaller than a
threshold τ , so that all vertices in subgraph G[VID] remain inac-
tive in later rounds. Here, |VID| is obtained using the aggregator of
Step (3). We stop once all vertices are marked as a SCC/subgraph
vertex. Then, we use one round of MapReduce to assign the sub-
graphs to different machines to compute the SCCs directly from
each subgraphG[VID]. Since each subgraph is small, its SCCs can
be computed on a single machine using an efficient main memory
algorithm, without inter-machine communication.

6.2 Multi-Label Algorithm
A real world graph usually has a giant SCC that contains the ma-

jority of its vertices, and it is desirable to find the giant SCC early
(e.g., in the first round) so that we can terminate earlier by apply-
ing Optimization 2 mentioned above. However, the min-label algo-
rithm may not find the giant SCC in the first round. For example, let
the giant SCC be SCCmax, then if there is a vertex v /∈ SCCmax
whose ID is smaller than all vertices in SCCmax, and if v links to
a vertex in SCCmax, then SCCmax cannot be found in Round 1
by the min-label algorithm. On the other hand, the multi-label al-
gorithm to be presented in this subsection almost always finds the
giant SCC in the first round.

The multi-label algorithm aims to speed up SCC discovery and
graph decomposition by propagating k source vertices in parallel,
instead of just one randomly picked source as done by the min-label
algorithm and existing algorithms [9, 3, 2, 17].

In this algorithm, each vertex v maintains two label sets Srcf (u)
and Srcb(u). The algorithm is similar to the min-label algorithm,



except that the min-label propagation operation is replaced with the
k-label propagation operation described below:

Forward k-Label Propagation. Suppose that the current vertex
partition is V1, V2, . . ., V`. (1)In Superstep 1, an aggregator ran-
domly selects k vertex samples from each subgraph G[Vi]. (2)In
Superstep 2, each source u initializes Srcf (u) = {u} and propa-
gates label u to all its out-neighbors, while each non-source vertex
v initializes Srcf (v) = ∅. Finally, the vertex votes to halt. (3)In
subsequent supersteps, if a vertex v receives a label u 6∈ Srcf (v)
from an in-neighbor, it updates Srcf (v) = Srcf (v) ∪ {u} and
propagates u to all its out-neighbors, before voting to halt.

The backward k-label propagation is symmetric. Unlike the min-
label algorithm where backward propagation is done after forward
propagation, in the multi-label algorithm, we perform both forward
and backward propagation in parallel.

The k-label propagation operation is also a BPPA with O(δ) su-
persteps, and when it terminates, each vertex v obtains a label pair
(Srcf (v), Srcb(v)). This labeling has the following property (the
proof can be found in Appendix B of [24]):

LEMMA 2. Let V(Sf ,Sb) = {v ∈ V : (Srcf (v), Srcb(v)) =

(Sf , Sb)}. Then, (i)any SCC is a subset of some V(Sf ,Sb), and
(ii)V(Sf ,Sb) is a SCC if Sf ∩ Sb 6= ∅.

We now analyze the number of rounds required. In any round,
we have ` subgraphs and thus around `k source vertices. Since we
do not know `, We only give a very loose analysis assuming ` = 1
(i.e., there are only k sources). Furthermore, we assume that ver-
tices are only marked because they form a SCC, while in practice
Optimization 2 of Section 6.1 is applied to also mark vertices of
sufficiently small subgraphs.

Suppose that we can mark (1 − θ)n vertices as SCC vertices in
each round, where 0 < θ < 1. Then, after i rounds the graph has
θin vertices, and in O(log1/θ n) rounds the graph is sufficiently
small to allow efficient single-machine SCC computation. We now
study the relationship between θ and k.

Assume that there are c SCCs inG: SCC1, SCC2, . . . , SCCc.
Let ni be the number of vertices in SCCi and pi = ni/n. We ana-
lyze how many vertices are marked in expectation after one round.
Note that if x sampled source vertices belong to the same SCC,
then we actually waste x − 1 samples. Our goal is to show that
such waste is limited.

We define a random variable X that refers to the number of ver-
tices marked. We also define an indicator variableXi for each SCC
SCCi as follows: Xi = 1 if at least one sample belongs to SCCi,
and Xi = 0 otherwise. Let sj be the j-th sample. We have

E[Xi] = Pr{Xi = 1} = 1−
k∏
j=1

Pr{sj 6∈ SCCi}

= 1−
k∏
j=1

(1− pi) = 1− (1− pi)k.

Note that X =
∑c
i=1 ni · Xi. According to the linearity of

expectation, we have

E[X] =

c∑
i=1

ni · E[Xi] =

c∑
i=1

[ni − ni(1− pi)k]

= n−
c∑
i=1

ni(1− pi)k = n− n
c∑
i=1

pi(1− pi)k.

Data Type |V| |E|

BTC undirected 164,732,473 772,822,094

LJ-UG undirected 10,690,276 224,614,770

Facebook undirected 59,216,214 185,044,032

USA undirected 23,947,347 58,333,344

Euro undirected 18,029,721 44,826,904

Twitter directed 52,579,682 1,963,263,821

LJ-DG directed 4,847,571 68,993,773

Pokec directed 1,632,803 30,622,564

Flickr directed 2,302,925 33,140,017

Patent directed 3,774,768 16,518,948

Figure 11: Datasets

In other words, θ =
∑c
i=1 pi(1 − pi)

k. Since the number of
vertices remaining unmarked is θn, we want θ to be as small as
possible. In fact, if the size of SCCs are biased, θ is small. This
is because if there is a very large SCC, it is likely that some of its
vertices are sampled as source vertices, and hence many vertices
will be marked as being a vertex of the SCC.

The worst case happens when all the SCCs are of equal size, i.e.,
pi = 1/c for all i, in which case θ = (1−1/c)k. Since (1−1/c) <
1, θ decreases with k, but the rate of decrement depends on c. For
example, when c = 1000, to get θ = 0.9 we need to set k = 100.
However, we note that real world graphs rarely have all SCCs with
similar sizes, and the analysis is very loose. In practice, k can be
much smaller even for very large c.

We now present a theorem that formalizes the above discussion
(the proof can be found in Appendix B of [24]).

THEOREM 2. If pi < 2
k+1

for all i, then θ ≤ (1 − 1/c)k.
Otherwise, θ =

∑c
i=1 pi(1− pi)

k < 1− 1/k.

Finally, we emphasize that Theorem 2 is very loose: when there
exists a SCC SCCi with pi much greater than 2

k+1
, θ is much

smaller than 1− 1/k.

7. EXPERIMENTAL EVALUATION
We evaluate the performance of our algorithms over large real-

world graphs. We ran all experiments on a cluster of 16 machines,
each with 24 processors (two Intel Xeon E5-2620 CPU) and 48GB
RAM. One machine is used as the master that runs only one work-
ing process (or simply, worker), while the other 15 machines act as
slaves each running 10 workers. The connectivity between any pair
of nodes in the cluster is 1Gbps.

All our algorithms were implemented in Pregel+2, which is an
open-source implementation of Pregel, though any Pregel-like sys-
tem can be used to implement our algorithms. We remark that we
did not use any optimization techniques in Pregel+, i.e., we used
only the basic features of Pregel, as our aim is to test the perfor-
mance of our algorithms in a general Pregel-like system. All the
source codes of the algorithms discussed in this paper can be found
in http://www.cse.cuhk.edu.hk/pregelplus/download.html.

Datasets. We used 10 real-world graph datasets, which are listed
in Figure 11: (1)BTC3: a semantic graph converted from the Billion
Triple Challenge 2009 RDF dataset [5]; (2)LJ-UG4: a network of
LiveJournal users and their group memberships; (3)Facebook5: a
friendship network of the Facebook social network; (4)USA6: the
2http://www.cse.cuhk.edu.hk/pregelplus
3http://km.aifb.kit.edu/projects/btc-2009/
4http://konect.uni-koblenz.de/networks/livejournal-groupmemberships
5http://konect.uni-koblenz.de/networks/facebook-sg
6http://www.dis.uniroma1.it/challenge9/download.shtml



BTC USA

Pregel+
GraphLab

Pregel+
GraphLab

Sync Async Sync Async

# of Supersteps 30 30 N/A 6262 6262 N/A

Computing Time (sec) 32.24 83.1 155 1011 2982 627

Figure 12: Pregel+ and GraphLab running Hash-Min

USA road network; (5)Euro7: the European road network; (6)Twit-
ter8: Twitter who-follows-who network based on a snapshot taken
in 2009; (7)LJ-DG9: a friendship network of the LiveJournal blog-
ging community; (8)Pokec10: a friendship network of the Pokec
social network; (9)Flickr11: a friendship network of the Flickr so-
cial network; (10)Patent12: the US patent citation network.

7.1 Performance Comparison with GraphLab
As discussed in Section 2, GraphLab [11] (and PowerGraph [10])

only allows a vertex to access the states of its adjacent vertices and
edges. As a result, it does not support algorithms in which a vertex
needs to communicate with a non-neighbor, such as the S-V algo-
rithm in Section 4.2, the list ranking algorithm in Section 5.2.2 and
the algorithm presented in Section 5.2.4. Thus, we cannot imple-
ment our BCC algorithm in GraphLab. Moreover, we also cannot
implement our SCC algorithms in GraphLab, because GraphLab
does not support graph mutations, while the graph decomposition
operation in our SCC algorithms involves edge deletion.

Due to the above-mentioned limitations, we only compare the
performance of GraphLab with Pregel+ for the Hash-Min algo-
rithm. We use GraphLab 2.2, which includes all the features of
PowerGraph [10], and ran both GraphLab’s asynchronous and syn-
chronous modes. GraphLab’s synchronous mode simulates Pregel,
but due to the above-mentioned limitations, it is also difficult to
implement the S-V, BCC and SCC algorithms in its synchronous
mode.

Figure 12 reports the performance of Pregel+ and GraphLab when
running Hash-Min over the small-diameter BTC graph (with skewed
degree distribution) and the large-diameter USA road network (in
which the degree of all vertices is small). The result shows that
Pregel+ is significantly faster than GraphLab for processing the
small-diameter BTC graph. For the large-diameter USA graph, Pregel+
is almost 3 times faster than the synchronous GraphLab, but is 1.6
times slower than the asynchronous GraphLab (for the reason given
below).

For a large-diameter graph like USA, asynchronous execution is
faster than its synchronous mode. This is because in asynchronous
execution, the update to min(v) is immediately visible to all other
vertices, while in synchronous execution, the update is visible to
other vertices only at the next superstep, resulting in a slower con-
vergence. However, for a small-diameter graph like BTC, the syn-
chronous execution converges in only 30 supersteps; thus, even
though the asynchronous mode can converge faster, the gain is
not big enough to cover the overhead of data locking/unlocking in
asynchronous execution.

Overall, the much superior performance of Pregel+ on small-
diameter graphs with skewed degree distribution, and the reason-
able performance of Pregel+ on large-diameter graphs, justify that
7http://www.dis.uniroma1.it/challenge9/download.shtml
8http://konect.uni-koblenz.de/networks/twitter mpi
9http://snap.stanford.edu/data/soc-LiveJournal1.html

10http://snap.stanford.edu/data/soc-pokec.html
11http://konect.uni-koblenz.de/networks/flickr-growth
12http://snap.stanford.edu/data/cit-Patents.html

Task

BTC LJ-UG Facebook

# of 

Steps

Comp. 

Time

# of 

Steps

Comp. 

Time

# of 

Steps

Comp. 

Time

HashMin 30 32.24 s 18 11.85 s 16 37.10 s

BFS 31 20.56 s 19 8.61 s 17 10.14 s

S-V 86 449.97 s 58 142.24 s 72 337.02 s

EulerTour 3 14.26 s 3 2.26 s 3 7.56 s

ListRank1 49 544.71 s 53 97.98 s 57 408.79 s

ListRank2 49 541.86 s 53 98.59 s 57 411.17 s

MinMax 46 35.88 s 50 8.54 s 54 20.42 s

AuxGraph 4 58.05 s 4 21.94 s 4 22.52 s

HashMin2 34 42.91 s 11 21.04 s 16 43.31 s

S-V2 72 443.16 s 58 138.59 s 86 385.86 s

Case1Mark 4 35.62 s 4 20.83 s 4 13.27 s

Total Time

(CC by HashMin)
1326.09 s 291.64 s 974.28 s

Total Time

(CC by S-V)
2123.51 s 530.97 s 1606.61 s

Figure 13: CC/BCC performance on BTC, LJ-UG, & Facebook

Pregel+ is a good choice of distributed graph computing system
for implementing our algorithms. In addition, the limitations of
GraphLab discussed above make the implementation of certain cat-
egories of graph algorithms difficult using GraphLab, which further
justifies the adoption of Pregel+ in our work.

Finally, we remark that this paper focuses on practical algorithms
for Pregel-like systems rather than on the systems themselves, and
we refer readers to our online report on a comprehensive compari-
son of existing systems including GraphLab, Giraph [1], GPS [16],
and Pregel+:
http://www.cse.cuhk.edu.hk/pregelplus/expTR.pdf.

7.2 Performance of CC & BCC Algorithms
In Section 5 we proposed PPAs/BPPAs for a list of fundamen-

tal graph problems. Since they are used as building blocks in the
PPA for computing BCCs, we also report their performance results
as the steps of the BCC computation. Recall from Section 5.2.5
that the sequence of PPA tasks in the BCC computation include:
(1)-(2)either HashMin + BFS, or S-V; (3)EulerTour; (4)ListRank1;
(5)ListRank2; (6)MinMax; (7)AuxGraph; (8)either HashMin2 or S-
V2; (9)Case1Mark. Among them, Tasks (1) and (8) also report
the performance of our two PPAs for computing CCs described in
Section 4.

We report the per-task performance of BCC computation on the
three small-diameter graphs BTC, LJ-UG and Facebook in Fig-
ure 13. Due to the small graph diameter, Hash-Min is much more
efficient than S-V over these graphs. For example, Hash-Min fin-
ishes in 18 supersteps on LJ-UG and uses only 11.85 seconds. In
contrast, S-V takes 58 supersteps and 142.24 seconds. Thus, the
results verify that it is more efficient to compute CCs using Hash-
Min when the graph diameter is small. We also give the total com-
putational time of our BCC algorithm, and the results again show
that using Hash-Min as a building block in the BCC computation
achieves almost twice shorter total time than using S-V.

Next, we report the per-task performance of BCC computation
on the two large-diameter road networks USA and Euro in Fig-
ure 14. Due to the large graph diameter, Hash-Min is very time-
consuming. For example, it takes 1011.19 seconds and 6262 su-
persteps on USA. In contrast, S-V takes only 198 supersteps and
368.20 seconds. This again shows the difference between anO(δ)-
superstep PPA (e.g., Hash-Min) and an O(logn)-superstep PPA
(e.g., S-V). Similar behavior is also observed for CC computation
over G∗, where HashMin2 uses 5437.72 seconds on USA while



Task
USA Euro

# of Steps Comp. Time # of Steps Comp. Time

HashMin 6262 1011.19 s 4896 692.39 s

BFS 6263 964.11 s 4897 639.78 s

S-V 198 368.20 s 212 340.19 s

EulerTour 3 3.04 s 3 2.42 s

ListRank1 55 203.05 s 55 165.89 s

ListRank2 55 197.78 s 55 160.49 s

MinMax 52 16.65 s 52 12.77 s

AuxGraph 4 12.29 s 4 9.89 s

HashMin2 7365 5437.72 s 2836 2935.28 s

S-V2 226 536.69 s 184 414.20 s

Case1Mark 4 2.90 s 4 1.94 s

Total Time

(CC by HashMin)
7848.73 s 4620.85 s

Total Time

(CC by S-V)
1340.60 s 1107.79 s

Figure 14: CC/BCC performance on USA & Euro

S-V2 on only 526.69 seconds. Overall, the S-V based BCC algo-
rithm is 5.85 times faster than the Hash-Min based BCC algorithm
on USA, and 4.17 times faster on Euro. This demonstrates the ad-
vantage of our S-V algorithm for processing large-diameter graphs.

It might be argued that computing the CCs of a road network
in Pregel is not important, as road networks are usually connected
and not very large. However, some spatial networks are huge in
size, such as the triangulated irregular network (TIN) that models
terrain, where CC computation is useful when we want to compute
the islands given a specific sea level. Also, CC computation is a
critical building block in our PPA for computing BCCs, and find-
ing BCCs of a spatial network is important for analyzing its weak
connection points.

7.3 Performance of SCC Algorithms
We now report the performance of our min-label and multi-label

algorithms for computing SCCs on the directed graphs.

7.3.1 Performance of Min-Label Algorithm
Before describing the results, we first review the sequence of

tasks performed in each round of our min-label algorithm: (1)Opt
1: this task removes trivial SCCs as described in Optimization 1 of
Section 6.1; (2)MinLabel: forward min-label propagation followed
by backward min-label propagation; (3)GDecom: this task uses an
aggregator to collect label pairs (minf (u),minb(u)) and assigns
a new ID to each pair, sets the ID of each vertex u according to
u’s (minf (u),minb(u)), marks each vertex u with minf (u) =
minb(u) as being in a SCC, and performs graph decomposition
using the algorithm described at the beginning of Section 6. Recall
that we do not decompose a subgraph if its size (decided by number
of vertices) is smaller than a user-defined threshold τ .

We first compute the SCCs of the largest graph, Twitter, where
we only mark a vertex when its SCC is determined (i.e., τ=0). Fig-
ure 15 reports the number of supersteps and the computational time
taken by each task. The last column “Max Size” shows the maxi-
mum |VID| among those subgraphs, G[VID], that are not marked
as a SCC after each round, and all SCCs are found when Max-
Size becomes 0. As Figure 15 shows, the min-label algorithm takes
only 4 rounds to compute all the SCCs over Twitter, which demon-
strates that in practice the min-label algorithm requires much less
than L rounds given in Theorem 1. Besides, the min-label propa-
gation operations take only a small number of supersteps due to the
small graph diameter. For example, in Round 1, forward propaga-
tion takes only 15 supersteps, followed by a 14-superstep backward

Round Task # of Steps Comp. Time Max Size

1

Opt 1 18 9.41 s

238,986MinLabel 15 + 14 75.80 s

GDecom 3 76.86 s

2

Opt 1 5 0.81 s

22MinLabel 36 + 75 18.73 s

GDecom 3 1.74 s

3

Opt 1 3 0.46 s

2MinLabel 6 + 5 2.02 s

GDecom 3 0.44 s

4

Opt 1 1 0.21 s

0MinLabel 3 + 3 0.96 s

GDecom 3 0.50 s

Total 187.94 s

Figure 15: Min-label performance on Twitter (τ = 0)

Round Task # of Steps Comp. Time Max Size

1

Opt 1 16 2.73 s

51,697MinLabel 14 + 16 14.91 s

GDecom 3 7.24 s

2

Opt 1 4 0.34 s

81MinLabel 8 + 9 1.91 s

GDecom 3 0.72 s

3

Opt 1 3 0.22 s

29MinLabel 6 + 7 1.08 s

GDecom 3 0.40 s

4

Opt 1 1 0.14 s

12MinLabel 4 + 4 1.01 s

GDecom 3 0.32 s

Total 31.02 s

Figure 16: Min-label performance on LJ-DG (τ = 0)

propagation. The total computational time is only 187.94 seconds
for a graph with almost 2 billion edges, which is very efficient.

Note that after Round 2 in Figure 15, the largest unmarked sub-
graph has size merely 22. Therefore, another option is to distribute
these small subgraphs to different machines for single-machine SCC
computation using MapReduce. Thus, we also run our min-label
algorithm over Twitter using τ = 50, 000, so that a subgraph is
marked to avoid further decomposition once it contains less than
50,000 vertices. All vertices are marked after 2 rounds, and the per-
formance is similar to those in Figure 15. We then run a MapRe-
duce job to compute the SCCs of the marked subgraphs, which
takes 199 seconds.

For the three relatively smaller graphs, Pokec, Flickr and Patent,
the min-label algorithm with τ = 0 finds all the SCCs in less than
4 rounds, and uses 18.09, 17.88, and 2.34 seconds, respectively.
The detailed results are reported in Appendix C [24] due to lim-
ited space. However, we remark that the min-label algorithm with
τ = 0 is not always able to find all the SCCs for an arbitrary
graph. One example is the LJ-DG datasets, the performance of
which is shown in Figure 16 (only the results of the first 4 rounds
are shown). In fact, for the subsequent three rounds, “Max Size”
decreases slowly as 11, 10 and 9. On the contrary, running min-
label algorithm on LJ-DG using τ = 50, 000 takes only 2 rounds
to mark all vertices, followed by a MapReduce job that computes
the SCCs of the marked subgraphs in 27 seconds.

7.3.2 Performance of Multi-Label Algorithm
We now report the performance of our multi-label algorithm. For

the parallel forward and backward k-label propagation, we fix k =
10. We also set τ = 50, 000 and subgraphs with less than 50, 000
vertices are not further decomposed. The performance of the multi-
label algorithm on the two larger graphs, Twitter and LJ-DG, are



Round Task # of Steps Comp. Time Max Size

1

Opt 1 18 8.07 s

238,986MultiLabel 17 423.85 s

GDecom 3 102.98 s

2

Opt 1 5 0.81 s

206,319MultiLabel 5 0.55 s

GDecom 3 0.41 s

3

Opt 1 1 0.16 s

206,292MultiLabel 6 0.94 s

GDecom 3 0.38 s

MapReduce 181 s

Figure 17: Multi-label performance on Twitter (τ = 50, 000)

Round Task # of Steps Comp. Time Max Size

1

Opt 1 16 2.66 s

51,697MultiLabel 19 27.02 s

GDecom 3 6.30 s

2

Opt 1 5 0.74 s

50,706MultiLabel 6 0.71 s

GDecom 3 0.25 s

3

Opt 1 1 0.13 s

50,629MultiLabel 8 0.80 s

GDecom 3 0.36 s

MapReduce 26 s

Figure 18: Multi-label performance on LJ-DG (τ = 50, 000)

shown in Figures 17 and 18. We can see that although Round 1
bounds the maximum unmarked subgraph size to a relatively small
number, “Max Size” decreases slowly in the later rounds and we
cannot afford to run till it gets smaller than 50, 000. However, the
subgraphs are small enough to be assigned to different machines for
local SCC computation using MapReduce, and the final round of
MapReduce postprocessing is efficient for both graphs. We obtain
similar results for the datasets Pokec, Flickr and Patent, and the
results are presented in Appendix C [24].

Unlike the min-label algorithm for which we can afford to run
until termination, the multi-label algorithm finds at most k SCCs in
each round, and is only effective in earlier rounds when there are
large SCCs. However, as discussed at the beginning of Section 6.2,
the multi-label algorithm almost always finds the largest SCC in the
first round, which is more desirable than the min-label algorithm.
Thus, in applications where only the largest SCC (also called the
giant SCC) is needed, the multi-label algorithm will be a better
choice; in applications where all SCCs are needed, running multi-
label algorithm for Round 1 followed by min-label algorithm for
the subsequent rounds can be a good choice.

8. CONCLUSIONS
We proposed efficient distributed algorithms for computing three

fundamental graph connectivity problems, namely CC, BCC, and
SCC. Specifically, we defined the notion of PPA to design Pregel
algorithms that have guaranteed performance, i.e., requiring only
linear space, communication and computation per iteration, and
only O(logn) or O(δ) iterations of computation. Experiments on
large real-world graphs verified that our algorithms have good per-
formance in shared-nothing parallel computing platforms.

For future work, we plan to define a class of algorithms similar
to PPA for the block-centric computing model [23]. We are also
interested in developing efficient Pregel algorithms for enumerat-
ing graph substructures such as triangles [7], rectangles [21], and
maximal cliques [6].
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