
Pregelix: Big(ger) Graph Analytics on A Dataflow Engine

Yingyi Bu1 Vinayak Borkar2∗ Jianfeng Jia1 Michael J. Carey1 Tyson Condie3

1University of California, Irvine 2X15 Software, Inc 3University of California, Los Angeles
1yingyib,jianfenj,mjcarey@ics.uci.edu, 2vinayakb@x15soft.com, 3tcondie@cs.ucla.edu

ABSTRACT
There is a growing need for distributed graph processing systems
that are capable of gracefully scaling to very large graph datasets.
Unfortunately, this challenge has not been easily met due to the in-
tense memory pressure imposed by process-centric, message pass-
ing designs that many graph processing systems follow. Pregelix
is a new open source distributed graph processing system that is
based on an iterative dataflow design that is better tuned to han-
dle both in-memory and out-of-core workloads. As such, Pregelix
offers improved performance characteristics and scaling properties
over current open source systems (e.g., we have seen up to 15×
speedup compared to Apache Giraph and up to 35× speedup com-
pared to distributed GraphLab), and more effective use of available
machine resources to support Big(ger) Graph Analytics.

1. INTRODUCTION
There are increasing demands to process Big Graphs for applica-

tions in social networking (e.g., friend recommendations), the web
(e.g., ranking pages), and human genome assembly (e.g., extract-
ing gene sequences). Unfortunately, the basic toolkits provided
by first-generation “Big Data” Analytics platforms (like Hadoop)
lack an essential feature for Big Graph Analytics: MapReduce
does not support iteration (or equivalently, recursion) or certain key
features required to efficiently iterate “around” a MapReduce pro-
gram. Moreover, the MapReduce programming model is not ideal
for expressing many graph algorithms. This shortcoming has mo-
tivated several specialized approaches or libraries that provide sup-
port for graph-based iterative programming on large clusters.

Google’s Pregel is a prototypical example of such a platform; it
allows problem-solvers to “think like a vertex” by writing a few
user-defined functions (UDFs) that operate on vertices, which the
framework can then apply to an arbitrarily large graph in a parallel
fashion. Open source versions of Pregel have since been devel-
oped in the systems community [4, 6]. Perhaps unfortunately for
both their implementors and users, each such platform is a distinct
new system that had to be built from the ground up. Moreover,
these systems follow a process-centric design, in which a set of
∗work done at the University of California, Irvine.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 41st International Conference on Very Large Data Bases,
August 31st - September 4th, 2015, Kohala Coast, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 2
Copyright 2015 VLDB Endowment 2150-8097/14/10... $ 10.00.

worker processes are assigned partitions (containing sub-graphs)
of the graph data and scheduled across a machine cluster. When a
worker process launches, it reads its assigned partition into mem-
ory, and executes the Pregel (message passing) algorithm. As we
will see, such a design can suffer from poor support for problems
that are not memory resident. Also desirable, would be the ability
to consider alternative runtime strategies that could offer more ef-
ficient executions for different sorts of graph algorithms, datasets,
and clusters.

The database community has spent nearly three decades build-
ing efficient shared-nothing parallel query execution engines [22]
that support out-of-core data processing operators (such as join and
group-by [27]), and query optimizers [16] that choose an “optimal”
execution plan among different alternatives. In addition, deductive
database systems—based on Datalog—were proposed to efficiently
process recursive queries [10], which can be used to solve graph
problems such as transitive closure. However, there is no scalable
implementation of Datalog that offers the same fault-tolerant prop-
erties supported by today’s “Big Data” systems (e.g., [32, 5, 11, 12,
44]). Nevertheless, techniques for evaluating recursive queries—
most notably semi-naı̈ve evaluation—still apply and can be used to
implement a scalable, fault-tolerant Pregel runtime.

In this paper, we present Pregelix, a large-scale graph analyt-
ics system that we began building in 2011. Pregelix takes a novel
set-oriented, iterative dataflow approach to implementing the user-
level Pregel programming model. It does so by treating the mes-
sages and vertex states in a Pregel computation like tuples with a
well-defined schema; it then uses database-style query evaluation
techniques to execute the user’s program. From a user’s perspec-
tive, Pregelix provides the same Pregel programming abstraction,
just like Giraph [4]. However, from a runtime perspective, Pregelix
models Pregel’s semantics as a logical query plan and implements
those semantics as an iterative dataflow of relational operators that
treat message exchange as a join followed by a group-by operation
that embeds functions that capture the user’s Pregel program. By
taking this approach, for the same logical plan, Pregelix is able to
offer a set of alternative physical evaluation strategies that can fit
various workloads and can be executed by Hyracks [12], a general-
purpose shared-nothing dataflow engine (which is also the query
execution engine for AsterixDB [1]). By leveraging existing im-
plementations of data-parallel operators and access methods from
Hyracks, we have avoided building many critical system compo-
nents, e.g., bulk-data network transfer, out-of-core operator imple-
mentations, buffer managers, index structures, and data shuffle.

To the best of our knowledge, Pregelix is the only Pregel-like
system that supports the full Pregel API, runs both in-memory
workloads and out-of-core workloads efficiently in a transparent

manner on shared-nothing clusters, and provides a rich set of run-
time choices. This paper makes the following contributions:

• An analysis of existing Pregel-like systems: We revisit the Pregel
programming abstraction and illustrate some shortcomings of
typical custom-constructed Pregel-like systems (Section 2).
• A new Pregel architecture: We capture the semantics of Pregel

in a logical query plan (Section 3), allowing us to execute Pregel
as an iterative dataflow.
• A system implementation: We first review the relevant building

blocks in Hyracks (Section 4). We then present the Pregelix sys-
tem, elaborating the choices of data storage and physical plans
as well as its key implementation details (Section 5).
• Case studies: We briefly describe several current use cases of

Pregelix from our initial user community (Section 6).
• Experimental studies: We experimentally evaluate Pregelix in

terms of execution time, scalability, throughput, plan flexibility,
and implementation effort (Section 7).

2. BACKGROUND AND PROBLEMS
In this section, we first briefly revisit the Pregel semantics and

the Google Pregel runtime (Section 2.1) as well as the internals
of Giraph, an open source Pregel-like system (Section 2.2), and
then discuss the shortcomings of such custom-constructed Pregel
architectures (Section 2.3).

2.1 Pregel Semantics and Runtime
Pregel [32] was inspired by Valiant’s bulk-synchronous parallel

(BSP) model [26]. A Pregel program describes a distributed graph
algorithm in terms of vertices, edges, and a sequence of iterations
called supersteps. The input to a Pregel computation is a directed
graph consisting of edges and vertices; each vertex is associated
with a mutable user-defined value and a boolean state indicating
its liveness; each edge is associated with a source and destination
vertex and a mutable user-defined value. During a superstep S,
a user-defined function (UDF) called compute is executed at each
active vertex V , and can perform any or all of the following actions:

• Read the messages sent to V at the end of superstep S − 1;
• Generate messages for other vertices, which will be exchanged

at the end of superstep S;
• Modify the state of V and its outgoing edges;
• Mutate the graph topology;
• Deactivate V from the execution.

Initially, all vertices are in the active state. A vertex can deactivate
itself by “voting to halt” in the call to compute using a Pregel pro-
vided method. A vertex is reactivated immediately if it receives a
message. A Pregel program terminates when every vertex is in the
inactive state and no messages are in flight.

In a given superstep, any number of messages may be sent to a
given destination. A user-defined combine function can be used to
pre-aggregate the messages for a destination. In addition, an aggre-
gation function (e.g., min, max, sum, etc.) can be used to compute
a global aggregate among a set of participating vertices. Finally,
the graph structure can be modified by any vertex; conflicts are
handled by using a partial ordering of operations such that all dele-
tions go before insertions, and then by using a user-defined conflict
resolution function.

The Google Pregel runtime consists of a centralized master node
that coordinates superstep executions on a cluster of worker nodes.
At the beginning of a Pregel job, each worker loads an assigned
graph partition from a distributed file system. During execution,
each worker calls the user-defined compute function on each active

Vertex { id: 1
 halt: false
 value: 3.0
 edges: (3,1.0),

(4,1.0)
 }
Vertex { id: 3
 halt: false
 value: 3.0
 edges: (2,1.0),

(3,1.0)
 }<5, 1.0>

<4, 3.0>

worker-1 worker-2

master

message <id, payload> control signal

superstep:3
halt: false

Vertex { id: 2
 halt: false
 value: 2.0
 edges: (3,1.0),

(4,1.0)
}
Vertex{ id: 4
 halt: false
 value: 1.0
 edges: (1,1.0)
}

<3, 1.0><2, 3.0>

Figure 1: Giraph process-centric runtime.

vertex in its partition, passing in any messages sent to the vertex in
the previous superstep; outgoing messages are exchanged among
workers. The master is responsible for coordinating supersteps and
detecting termination. Fault-tolerance is achieved through check-
pointing at user-specified superstep boundaries.

2.2 Apache Giraph
Apache Giraph [4] is an open source project that implements the

Pregel specification in Java on the Hadoop infrastructure. Giraph
launches master and worker instances in a Hadoop map-only job1,
where map tasks run master and worker instances. Once started, the
master and worker map tasks internally execute the iterative com-
putation until completion, in a similar manner to Google’s Pregel
runtime. Figure 1 depicts Giraph’s process-centric runtime for im-
plementing the Pregel programming model. The vertex data is par-
titioned across worker tasks (two in this case). Each worker task
communicates its control state (e.g., how many active vertices it
owns, when it has completed executing a given superstep, etc.) to
the master task. The worker tasks establish communication chan-
nels between one another for exchanging messages that get sent
during individual vertex compute calls; some of these messages
could be for vertices on the same worker, e.g., messages <2, 3.0>
and <3,1.0> in Figure 1.

2.3 Issues and Opportunities
Most process-centric Pregel-like systems have a minimum re-

quirement for the aggregate RAM needed to run a given algorithm
on a particular dataset, making them hard to configure for memory
intensive computations and multi-user workloads. In fact, Google’s
Pregel only supports in-memory computations, as stated in the orig-
inal paper [32]. Hama [6] has limited support for out-of-core ver-
tex storage using immutable sorted files, but it requires that the
messages be memory-resident. The latest version of Giraph has
preliminary out-of-core support; however, as we will see in Sec-
tion 7, it does not yet work as expected. Moreover, in the Giraph
user mailing list2 there are 26 cases (among 350 in total) of out-of-
memory related issues from March 2013 to March 2014. The users
who posted those questions were typically from academic institutes
or small businesses that could not afford memory-rich clusters, but
who still wanted to analyze Big Graphs. These issues essentially
stem from Giraph’s ad-hoc, custom-constructed implementation of
disk-based graph processing. This leads to our first opportunity to
improve on the current state-of-the-art.
Opportunity (Out-of-core Support) Can we leverage mature
database-style storage management and query evaluation tech-
niques to provide better support for out-of-core workloads?

Another aspect of process-centric designs is that they only offer
a single physical layer implementation. In those systems, the vertex
1Alternatively, Giraph can use YARN [39] for resource allocation.
2http://mail-archives.apache.org/mod mbox/giraph-user/

Relation Schema
Vertex (vid, halt, value, edges)
Msg (vid, payload)
GS (halt, aggregate, superstep)

Table 1: Nested relational schema that models the Pregel state.

storage strategy, the message combination algorithm, the message
redistribution strategy, and the message delivery mechanism are
each usually bound to one specific implementation. Therefore, we
cannot choose between alternative implementation strategies that
would offer a better fit to a particular dataset, algorithm, cluster
or desktop. For instance, the single source shortest paths algorithm
exhibits sparsity of messages, in which case a desired runtime strat-
egy could avoid iterating over all vertices by using an extra index
to keep track of live vertices. This leads to our second opportunity.

Opportunity (Physical Flexibility) Can we better leverage data,
algorithmic, and cluster/hardware properties to optimize a specific
Pregel program?

The third issue is that the implementation of a process-centric
runtime for the Pregel model spans a full stack of network manage-
ment, communication protocol, vertex storage, message delivery
and combination, memory management, and fault-tolerance; the
result is a complex (and hard-to-get-right) runtime system that im-
plements an elegantly simple Pregel semantics. This leads to our
third, software engineering opportunity.

Opportunity (Software Simplicity) Can we leverage more from
existing data-parallel platforms—platforms that have been im-
proved for many years—to simplify the implementation of a
Pregel-like system?

We will see how these opportunities are exploited by our pro-
posed architecture and implementation in Section 5.8.

3. THE PREGEL LOGICAL PLAN
In this section, we model the semantics of Pregel as a logi-

cal query plan. This model will guide the detailed design of the
Pregelix system (Section 5).

Our high level approach is to treat messages and vertices as data
tuples and use a join operation to model the message passing be-
tween vertices, as depicted in Figure 2. Table 1 defines a set of
nested relations that we use to model the state of a Pregel execu-
tion. The input data is modeled as an instance of the Vertex re-
lation; each row identifies a single vertex with its halt, value, and
edge states. All vertices with a halt = false state are active in
the current superstep. The value and edges attributes represent the
vertex state and neighbor list, which can each be of a user-defined
type. The messages exchanged between vertices in a superstep are
modeled by an instance of the Msg relation, which associates a des-
tination vertex identifier with a message payload. Finally, the GS

relation from Table 1 models the global state of the Pregel program;
here, when halt = true the program terminates3, aggregate is a
global state value, and superstep tracks the current iteration count.

Figure 2 models message passing as a join between the Msg and
Vertex relations. A full-outer-join is used to match messages with
vertices corresponding to the Pregel semantics as follows:

• The inner case matches incoming messages with existing desti-
nation vertices;
• The left-outer case captures messages sent to vertices that may

not exist; in this case, a vertex with the given vid is created with
other fields set to NULL.

3This global halting state depends on the halting states of all ver-
tices as well as the existence of messages.

1.0

vid edges

vid msg

vid=vid

2
4

halt
false
false

value
2.0
1.0

(3,1.0),(4,1.0)
(1,1.0)

2
4 3.0

Msg

Vertex

5
3

3.0

1.0

1 false 3.0 (3,1.0),(4,1.0)
3 false 3.0 (2,1.0),(3,1.0)

3

vid edges

1

halt

false
false

value

3.0
3.0

(3,1.0),(4,1.0)
(2,1.0),(3,1.0)

msg

NULL
1.0

5 1.0 NULL NULL NULL
2 false 2.0 (3,1.0),(4,1.0)3.0
4 false 1.0 (1,1.0)3.0

Figure 2: Implementing message-passing as a logical join.

UDF Description
compute Executed at each active vertex in every superstep.
combine Aggregation function for messages.
aggregate Aggregation function for the global state.
resolve Used to resolve conflicts in graph mutations.

Table 2: UDFs used to capture a Pregel program.

• The right-outer case captures vertices that have no messages; in
this case, compute still needs to be called for such a vertex if it
is active.

The output of the full-outer-join will be sent to further operator pro-
cessing steps that implement the Pregel semantics; some of these
downstream operators will involve UDFs that capture the details
(e.g., compute implementation) of the given Pregel program.

Table 2 lists the UDFs that implement a given Pregel program. In
a given superstep, each active vertex is processed through a call to
the compute UDF, which is passed the messages sent to the vertex
in the previous superstep. The output of a call to compute is a tuple
that contains the following fields:

• The possibly updated Vertex tuple.
• A list of outbound messages (delivered in the next superstep).
• The global halt state contribution, which is true when the out-

bound message list is empty and the halt field of the updated
vertex is true, and false otherwise.
• The global aggregate state contribution (tuples nested in bag).
• The graph mutations (a nested bag of tuples to insert/delete

to/from the Vertex relation).

As we will see below, this output is routed to downstream operators
that extract (project) one or more of these fields and execute the
dataflow of a superstep. For instance, output messages are grouped
by the destination vertex id and aggregated by the combine UDF.
The global aggregate state contributions of all vertices are passed
to the aggregate function, which produces the global aggregate
state value for the subsequent superstep. Finally, the resolveUDF
accepts all graph mutations—expressed as insertion/deletion tuples
against the Vertex relation—as input, and it resolves any conflicts
before they are applied to the Vertex relation.

We now turn to the description of a single logical dataflow plan;
we divide it into three figures that each focus on a specific applica-
tion of the (shared) output of the compute function. The relevant
dataflows are labeled in each figure. Figure 3 defines the input
to the compute UDF, the output messages, and updated vertices.
Flow D1 describes the compute input for superstep i as being the
output of a full-outer-join between Msg and Vertex (as described
by Figure 2) followed by a selection predicate that prunes inac-
tive vertices. The compute output pertaining to vertex data is pro-
jected onto dataflow D2, which then updates the Vertex relation.

…
D2 D4,D5,D6

vid combine

UDF Call (compute)

M.vid=V.vid

Vertexi(V)Msgi(M)

Vertexi+1 Msgi+1

(V.halt =false || M.payload != NULL)

D3

D7 Flow Data

D2 Vertex tuples

D3 Msg tuples

D7 Msg tuples
after
combination

D1

Figure 3: The basic logical query plan of a Pregel superstep
i which reads the data generated from the last superstep (e.g.,
Vertexi, Msgi, and GSi) and produces the data (e.g., Vertexi+1,
Msgi+1, and GSi+1) for superstep i + 1. Global aggregation
and synchronization are in Figure 4, and vertex addition and
removal are in Figure 5.

D1

Agg(aggregate)Agg(bool-and)
D4 D5

UDF Call (compute)

GSi+1

GSi(G)

superstep=G.superstep+1
D10

Flow Data

D4 The global halting state
contribution

D5 Values for aggregate

D8 The global halt state

D9 The global aggregate value

D10 The increased superstep

D9D8

D2,D3,D6 …

Figure 4: The plan segment that revises the global state.

D2,D3,D4,D5

D1

vid(resolve)

UDF Call (compute)

Vertexi+1
Flow Data

D6 Vertex tuples for
deletions and
insertions

D6
…

Figure 5: The plan segment for vertex addition/removal.

In datafow D3, the message output is grouped by destination ver-
tex id and aggregated by the combine function4, which produces
flow D7 that is inserted into the Msg relation.

The global state relation GS contains a single tuple whose fields
comprise the global state. Figure 4 describes the flows that revise
these fields in each superstep. The halt state and global aggre-
gate fields depend on the output of compute, while the superstep
counter is simply its previous value plus one. Flow D4 applies
a boolean aggregate function (logical AND) to the global halting
state contribution from each vertex; the output (flow D8) indicates
the global halt state, which controls the execution of another super-
step. Flow D5 routes the global aggregate state contributions from
all active vertices to the aggregate UDF which then produces the
global aggregate value (flow D9) for the next superstep.

Graph mutations are specified by a Vertex tuple with an op-
eration that indicates insertion (adding a new vertex) or deletion
(removing a vertex)5. Flow D6 in Figure 5 groups these mutation
tuples by vertex id and applies the resolve function to each group.
The output is then applied to the Vertex relation.

4The default combine gathers all messages for a given destination
into a list.
5Pregelix leaves the application-specific vertex deletion semantics
in terms of integrity constraints to application programmers.

4. THE RUNTIME IMPLEMENTATION
The Pregel logical plan could be implemented on any paral-

lel dataflow engine, including Stratosphere [11], Spark [44] or
Hyracks [12]. As we argue below, we believe that Hyracks is par-
ticularly well-suited for this style of computation; this belief is sup-
ported by Section 7’s experimental results (where some of the sys-
tems studied are based on other platforms). The rest of this section
covers the Hyracks platform [12], which is Pregelix’s target run-
time for the logical plan in Section 3. Hyracks is a data-parallel run-
time in the same general space as Hadoop [5] and Dryad [30]. Jobs
are submitted to Hyracks in the form of DAGs (directed acyclic
graphs) that are made up of operators and connectors. Operators
are responsible for consuming input partitions and producing out-
put partitions. Connectors perform redistributions of data between
operators. For a submitted job, in a Hyracks cluster, a master ma-
chine dictates a set of worker machines to execute clones of the op-
erator DAG in parallel and orchestrates data exchanges. Below, we
enumerate the features and components of Hyracks that we lever-
age to implement the logical plan described in Section 3.

User-configurable task scheduling. The Hyracks engine allows
users to express task scheduling constraints (e.g., count constraints,
location choice constraints, or absolute location constraints) for
each physical operator. The task scheduler of Hyracks is a con-
straint solver that comes up with a schedule satisfying the user-
defined constraints. In Section 5.3.4, we leverage this feature of
Hyracks to implement sticky, iterative dataflows.

Access methods. B-trees and LSM B-trees are part of the
Hyracks storage library. A B-tree [19] is a commonly used index
structure in most commercial databases; it supports efficient lookup
and scan operations, but a single tree update can cause random I/Os.
In contrast, the LSM B-tree [34] puts updates into an in-memory
component (e.g., an in-memory B-tree); it merges the in-memory
component with disk components in a periodic manner, which turns
random I/Os for updates into sequential ones. The LSM B-tree thus
allows fast updates but may result in slightly slower lookups.

Group-by operators. The Hyracks operator library includes
three group-by operator implementations: sort-based group-by,
which pushes group-by aggregations into both the in-memory sort
phase and the merge phase of an external sort operator; HashSort
group-by, which does the same thing as the sort-based one except
using hash-based group-by for the in-memory processing phase;
and preclustered group-by, which assumes incoming tuples are al-
ready clustered by the group-by key and hence just applies the ag-
gregation operation in sequence to one group after the other.

Join operators. Merge-based index full outer join and probe-
based index left-outer join are supported in the Hyracks operator
library. The full outer join operator merges sorted input from the
outer relation with an index scan on the inner relation; tuples con-
taining NULL values for missing fields will be generated for no-
matches. The left-outer join operator, for each input tuple in the
outer relation, consults an index on the inner relation for matches
that produce join results or for no-matches that produce tuples with
NULL values for the inner relation attributes.

Connectors. Hyracks connectors define inter-operator data ex-
change patterns. Here, we focus on the following three commu-
nication patterns: an m-to-n partitioning connector repartitions the
data based on a user-defined partitioning function from m (sender-
side) partitions to n (receiver-side) partitions; the m-to-n partition-
ing merging connector does the same thing but assumes tuples from
the sender-side are ordered and therefore simply merges the input
streams at the receiver-side; the aggregator connector reduces all
input streams to a single receiver partition.

Msg-2

3

vid edgesvid msg
vid=vid

2
4

halt
false
false

value
2.0
1.0

(3,1.0) (4,1.0)
(1,1.0)

2
4

3.0
3.0

vid edges

2
4

halt

false
false

value

2.0
1.0

(3,1.0),(4,1.0)
(1,1.0)

msg

3.0
3.0

vid edgesvid msg
vid=vid

1
3

halt
false
false

value
3.0
3.0

(3,1.0) (4,1.0)3
5

1.0

1.0

vid edges

1

halt

false
false

value

3.0
3.0

(3,1.0),(4,1.0)
(2,1.0),(3,1.0)

msg

NULL
1.0

5 1.0 NULL NULL NULL

Worker-1 Worker-2

Msg-1 Vertex-1 Vertex-2
(2,1.0),(3,1.0)

2
5

3.0
1.0

output-Msg-1

3
4

1.0
3.0

output-Msg-2

vid msg vid msg

Figure 6: The parallelized join for the logical join in Figure 2.

Materialization policies. We use two materialization policies
that Hyracks supports for customizing connectors: fully pipelined,
where the data from a producer is immediately pushed to the con-
sumer, and sender-side materializing pipelined, where the data
transfer channel launches two threads at the sender side, one that
writes output data to a local temporary file, and another that pulls
written data from the file and sends it to the receiver-side.

5. THE PREGELIX SYSTEM
In this section, we describe our implementation of the logical

plan (Section 3) on the Hyracks runtime (Section 4), which is core
of the Pregelix system. We elaborate on data-parallel execution
(Section 5.1), data storage (Section 5.2), physical query plan al-
ternatives (Section 5.3), memory management (Section 5.4), fault-
tolerance (Section 5.5), and job pipelining (Section 5.6). We con-
clude by summarizing the software components of Pregelix (Sec-
tion 5.7) and revisiting our three opportunities (Section 5.8).

5.1 Parallelism
To parallelize the logical plan of the Pregel computation de-

scribed in Section 3 at runtime, one or more clones of a physical
plan—that implements the logical plan—are shipped to Hyracks
worker machines that run in parallel. Each clone deals with a single
data partition. During execution, data is exchanged from the clones
of an upstream operator to those of a downstream operator through
a Hyracks connector. Figure 6 shows an example, where the logi-
cal join described in Figure 2 is parallelized onto two workers and
message tuples are exchanged from producer partitions (operator
clones) to consumer partitions (operator clones) using an m-to-n
partitioning connector, where m and n are equal to two.

5.2 Data Storage
Given a graph analytical job, Pregelix first loads the input graph

dataset (the initial Vertex relation) from a distributed file sys-
tem, i.e., HDFS, into a Hyracks cluster, partitioning it by vid using
a user-defined partitioning function6 across the worker machines.
After the eventual completion of the overall Pregel computation,
the partitioned Vertex relation is scanned and dumped back to
HDFS. During the supersteps, at each worker node, one (or more)
local indexes—keyed off of the vid field—are used to store one (or
more) partitions of the Vertex relation. Pregelix leverages both B-
tree and LSM B-tree index structures from the Hyracks storage li-
brary to store partitions of Vertex on worker machines. The choice

6By default, we use hash partitioning.

vidcombine

vidcombine

(Sort-based)

(Sort-based)

(Sort-based)

(Sort-based)

(Sort-based)

(Sort-based)

Sort-Groupby-M-to-N-Partitioning HashSort-Groupby-M-to-N-Partitioning

Sort-Groupby-M-to-N-Merge-Partitioning HashSort-Groupby-M-to-N-Merge-Partitioning

M-to-N Partitioning Connector M-To-N Partitioning Merging Connector

vidcombine vidcombine

vidcombine vidcombine

vidcombine

vidcombine

(Preclustered)

(Sort-based)

(Preclustered)

(Sort-based)

(Preclustered)

(Sort-based)

vidcombine vidcombine

vidcombine vidcombine vidcombine

vidcombine

(Preclustered)

(HashSort)

(Preclustered)

(HashSort)

(Preclustered)

(HashSort)

vidcombine vidcombine

vidcombine vidcombine

vidcombine

vidcombine

(HashSort)

(HashSort)

(HashSort)

(HashSort)

(HashSort)

(HashSort)

vidcombine vidcombine

vidcombine vidcombine

Figure 7: The four physical group-by strategies for the group-
by operator which combines messages in Figure 3.

of which index structure to use is workload-dependent and user-
selectable. A B-tree index performs well on jobs that frequently
update vertex data in-place, e.g., PageRank. An LSM B-tree index
performs well when the size of vertex data is changed drastically
from superstep to superstep, or when the algorithm performs fre-
quent graph mutations, e.g., the path merging algorithm in genome
assemblers [45].

The Msg relation is initially empty; it is refreshed at the end of a
superstep with the result of the message combine function call in
the (logical) dataflowD7 of Figure 3; the physical plan is described
in Section 5.3.1. The message data is partitioned by destination
vertex id (vid) using the same partitioning function applied to the
vertex data, and is thus stored (in temporary local files) on worker
nodes that maintain the destination vertex data. Furthermore, each
message partition is sorted by the vid field.

Lastly, we leverage HDFS to store the global state of a Pregelix
job; an access method is used to read and cache the global state at
worker nodes when it is referenced by user-defined functions like
compute.

5.3 Physical Query Plans
In this subsection, we dive into the details of the physical plans

for the logical plan described in Figures 3, 4, and 5. Our discussion
will cover message combination and delivery, global states, graph
mutations, and data redistribution.

5.3.1 Message Combination
Figure 3 uses a logical group-by operator for message combi-

nation. For that, Pregelix leverages the three group-by operator
implementations mentioned in Section 4. A preclustered group-by
can only be applied to input data that is already clustered by the
grouping key. A HashSort group-by operator offers better perfor-
mance (over sort-based group-by) when the number of groups (the
number of distinct message receivers in our case) is small; other-
wise, these two group-by operators perform similarly. In a paral-
lel execution, the grouping is done by two stages—each producer
partitions its output (message) data by destination vid, and the out-
put is redistributed (according to destination vid) to each consumer,
which performs the final grouping step.

Pregelix has four different parallel group-by strategies, as shown
in Figure 7. The lower two strategies use an m-to-n partitioning
merging connector and only need a simple one-pass pre-clustered
group-by at the receiver-side; however, in this case, receiver-side
merging needs to coordinate the input streams, which takes more

Index Left Outer
Join

UDF Call (compute)

M.vid=V.vid

Vertexi(V)Msgi(M)

(V.halt = false || M.paylod != NULL) UDF Call (compute)

Vertexi(V)Msgi(M)

…

Vidi(I)

…

Vidi+1
(halt = false)

Function Call (NullMsg)

Index Full Outer Join Merge (choose())
M.vid=I.vid

D11

D12

M.vid=V.vid

D1

D1

D2 -- D6

D2 -- D6

Figure 8: Two physical join strategies for forming the input to
the compute UDF. On the left is an index full outer join ap-
proach. On the right is an index left outer join approach.

time as the cluster size grows. The upper two strategies use an
m-to-n partitioning connector, which does not require such co-
ordination; however, these strategies do not deliver sorted data
streams to the receiver-side group-bys, so re-grouping is needed
at the receiver-side. A fully pipelined policy is used for the m-to-
n partitioning connector in the upper two strategies, while in the
lower two strategies, a sender-side materializing pipelined policy
is used by the m-to-n partitioning merging connector to avoid pos-
sible deadlock scenarios mentioned in the query scheduling litera-
ture [27]. The choice of which group-by strategy to use depends
on the dataset, graph algorithm, and cluster. We will further pursue
this choice in our experiments (Section 7).

5.3.2 Message Delivery
Recall that in Figure 3, a logical full-outer-join is used to deliver

messages to the right vertices and form the data needed to call the
compute UDF. For that, we use index-based joins because (a) ver-
tices are already indexed by vid, and (b) all four group-by strategies
in Figure 7 flow the (combined) messages out of their receiver-side
group-bys in vid-sorted order, thereby producing vid-sorted Msg
partitions.

Pregelix offers two physical choices for index-based joins—an
index full outer join approach and an index left outer join approach,
as shown in Figure 8. The full outer join plan scans the entire ver-
tex index to merge it with the (combined) messages. This join strat-
egy is suitable for algorithms where most vertices are live (active)
across supersteps (e.g., PageRank). The left outer join plan prunes
unnecessary vertex scans by first searching the live vertex index for
each (combined) incoming message, and it fits cases where mes-
sages are sparse and only few vertices are live in every superstep
(e.g., single source shortest paths). A user can control which join
approach Pregelix uses for a given job. We now briefly explain the
details of the two join approaches.

Index Full Outer Join. As shown in left side of Figure 8, this
plan is straightforwardly mapped from the logical plan. The join
operator simply merges a partition of Msg and Vertex using a sin-
gle pass.

Index Left Outer Join. As shown in right of Figure 8, this
plan initially bulk loads another B-tree Vid with null messages
(vid, NULL) that are generated by a function NullMsg. This in-
dex serves to represent the set of currently active vertices. The
dataflows D11 and D12 in Figure 8 are (vid, halt) tuples and (vid,
NULL) tuples respectively. Note that Vid is partitioned in the same
way as Vertex. In the next superstep, a merge operator merges tu-
ples from Msg and Vid based on the equivalence of the vid fields,
and the choose function inside the operator selects tuples from Msg

to output when there are duplicates. Output tuples of the merge
operator are sent to an index left outer join operator that probes
the Vertex index. Tuples produced by the left outer join operator

are directly sent to the compute UDF. The original filter opera-
tor σ(V.halt=false||M.payload!= NULL) in the logical plan is logi-
cally transformed to the merge operator where tuples in Vid satisfy
halt=false and tuples in Msg satisfy M.payload!= NULL.

To minimize data movements among operators, in a physical
plan, we push the filter operator, the UDF call of compute, the
update to Vertex, and the extraction (project) of fields in the out-
put tuple of compute into the upstream join operator as Hyracks
“mini-operators.”

5.3.3 Global States and Graph Mutations
To form the global halt state and aggregate state—see the two

global aggregations in Figure 4—we leverage a standard two-stage
aggregation strategy. Each worker pre-aggregates these state values
(stage one) and sends the result to a global aggregator that produces
the final result and writes it to HDFS (stage two). The incrementing
of superstep is also done by a trivial dataflow.

The additions and removals of vertices in Figure 5 are applied
to the Vertex relation by an index insert-delete operator. For the
group-by operator in Figure 5, we only do a receiver-side group-by
because the resolve function is not guaranteed to be distributive
and the connector for D6 (in Figure 3) is an m-to-n partitioning
connector in the physical plan.

5.3.4 Data Redistribution
In a physical query plan, data redistribution is achieved by ei-

ther the m-to-n hash partitioning connector or the m-to-n hash par-
titioning merging connector (mentioned in Section 4). With the
Hyracks provided user-configurable scheduling, we let the location
constraints of the join operator (in Figure 8) be the same as the
places where partitions of Vertex are stored across all the super-
steps. Also, the group-by operator (in Figure 7) has the same loca-
tion constraints as the join operator, such that in all supersteps, Msg
and Vertex are partitioned in the same (sticky) way and the join
between them can be done without extra repartitioning. Therefore,
the only necessary data redistributions in a superstep are (a) redis-
tributing outgoing (combined) messages from sender partitions to
the right vertex partitions, and (b) sending each vertex mutation to
the right partition for addition or removal in the graph data.

5.4 Memory Management
Hyracks operators and access methods already provide support

for out-of-core computations. The default Hyracks memory pa-
rameters work for all aggregated memory sizes as long as there is
sufficient disk space on the worker machines. To support both in-
memory and out-of-core workloads, B-trees and LSM-trees both
leverage a buffer cache that caches partition pages and gracefully
spills to disk only when necessary using a standard replacement
policy, i.e., LRU. In the case of an LSM B-tree, some number of
buffer pages are pinned in memory to hold memory-resident B-tree
components.

The majority of the physical memory on a worker machine is
divided into four parts: the buffer cache for access methods of the
Vertex relation; the buffers for the group-by operator clones; the
buffers for network channels; and the file system cache for (a) tem-
porary run files generated by group-by operator clones, (b) tempo-
rary files for materialized data redistributions, and (c) temporary
files for the relation Msg. The first three memory components are
explicitly controlled by Pregelix and can be tuned by a user, while
the last component is (implicitly) managed by the underlying OS.
Although the Hyracks runtime is written in Java, it uses a bloat-
aware design [14] to avoid unnecessary memory bloat and to mini-
mize the performance impact of garbage collection in the JVM.

5.5 Fault-Tolerance
Pregelix offers the same level of fault-tolerance as other Pregel-

like systems [32, 4, 6] by checkpointing states to HDFS at user-
selected superstep boundaries. In our case, the states to be check-
pointed at the end of a superstep include Vertex and Msg (as well
as Vid if the left outer join approach is used). The checkpointing
of Msg ensures that a user program does not need to be aware of
failures. Since GS stores its primary copy in HDFS, it need not be
part of the checkpoint. A user job can determine whether or not
to checkpoint after a superstep. Once a node failure or disk failure
happens, the failed machine is added into a blacklist.

During recovery, Pregelix finds the latest checkpoint and reloads
the states to a newly selected set of failure-free worker machines.
Reloading states includes two steps. First, it kicks off physical
query plans to scan, partition, sort, and bulk load the entire Vertex
and Vid (if any) from the checkpoint into B-trees (or LSM B-trees),
one per partition. Second, it executes another physical query plan
to scan, partition, sort, and write the checkpointed Msg data to each
partition as a local file.

5.6 Job Pipelining
Pregelix can accept an array of jobs and pipeline between com-

patible contiguous jobs without HDFS writes/reads nor index bulk-
loads. Two compatible jobs should have a producer-consumer rela-
tionship regarding the output/input data and share the same type of
vertex—meaning, they interpret the corresponding bits in the same
way. This feature was motivated by the genome assembler [45] ap-
plication which runs six different graph cleaning algorithms that are
chained together for many rounds. A user can choose to enable this
option to get improved performance with reduced fault-tolerance.

5.7 Pregelix Software Components
Pregelix supports the Pregel API introduced in Section 2.1

in Java, which is very similar to the APIs of Giraph [4] and
Hama [6]. Internally, Pregelix has a statistics collector, failure man-
ager, scheduler, and plan generator which run on a client machine
after a job is submitted; it also has a runtime context that stays on
each worker machine. We describe each component below.

Statistics Collector. The statistics collector periodically collects
statistics from the target Hyracks cluster, including system-wide
counters such as CPU load, memory consumption, I/O rate, net-
work usage of each worker machine, and the live machine set, as
well as Pregel-specific statistics such as the vertex count, live vertex
count, edge count, and message count of a submitted job.

Failure Manager. The failure manager analyzes failure traces
and recovers from those failures that are indeed recoverable. It only
tries to recover from interruption errors (e.g., a worker machine is
powered off) and I/O related failures (e.g., disk I/O errors); it just
forwards application exceptions to end users. Recovery is done as
mentioned in Section 5.5.

Scheduler. Based on the information obtained by the statistics
collector and the failure manager, the scheduler determines which
worker machines to use to run a given job. The scheduler assigns
as many partitions to a selected machine as the number of its cores.
For each Pregel superstep, Pregelix sets location constraints for
operators in the manner mentioned in Section 5.3.4. For loading
Vertex from HDFS [5], the constraints of the data scanning oper-
ator (set by the scheduler) exploit data locality for efficiency.

Plan Generator. The plan generator generates physical query
plans for data loading, result writing, each single Pregel superstep,
checkpointing, and recovery. The generated plan includes a physi-
cal operator DAG and a set of location constraints for each operator.

Runtime Context. The runtime context stores the cached GS

tuple and maintains the Pregelix-specific implementations of the
Hyracks extensible hooks to customize buffer, file, and index man-
agement.

5.8 Discussion
Let us close this section by revisiting the issues and opportuni-

ties presented in Section 2.3 and evaluating their implications in
Pregelix:

• Out-of-core Support. All the data processing operators as well
as access methods we use have out-of-core support, which al-
lows the physical query plans on top to be able to run disk-based
workloads as well as multi-user workloads while retaining good
in-memory processing performance.
• Physical Flexibility. The current physical choices spanning ver-

tex storage (two options), message delivery (two alternatives),
and message combination (four strategies) allow Pregelix to have
sixteen (2 × 2 × 4) tailored executions for different kinds of
datasets, graph algorithms, and clusters.
• Software Simplicity. The implementations of all the described

functionalities in this section leverage existing operator, connec-
tor, and access method libraries provided by Hyracks. Pregelix
does not involve modifications to the Hyracks runtime.

6. PREGELIX CASE STUDIES
In this section, we briefly enumerate several Pregelix use cases,

including a built-in graph algorithm library, a study of graph con-
nectivity problems, and research on parallel genome assembly.

The Pregelix Built-in Library. The Pregelix software distri-
bution comes with a library that includes several graph algorithms
such as PageRank, single source shortest paths, connected compo-
nents, reachability query, triangle counting, maximal cliques, and
random-walk-based graph sampling. Figure 9 shows the single
source shortest paths implementation on Pregelix, where hints for
the join, group-by, and connector choices are set in the main func-
tion. Inside compute, the method calls to set a vertex value and
to send a message internally generate output tuples for the corre-
sponding dataflows.

Graph Connectivity Problems. Using Pregelix, a graph analyt-
ics research group in Hong Kong has implemented several graph al-
gorithm building blocks such as BFS (breath first search) spanning
tree, Euler tour, list ranking, and pre/post-ordering. These build-
ing blocks have been used to develop advanced graph algorithms
such as bi-connected components for undirected graphs (e.g., road
networks) and strongly connected components for directed graphs
(e.g., the Twitter follower network) [42] . The group also scale-
tested all of their algorithms on a 60 machine cluster with 480 cores
and 240 disks, using Pregelix as the infrastructure.

Genome Assembly. Genomix [3] is a data-parallel genome as-
sembler built on top of Pregelix. It first constructs a (very large)
De Bruijn graph [45] from billions of genome reads, and then (a)
cleans the graph with a set of pre-defined subgraph patterns (de-
scribed in [45]) and (b) merges available single paths into vertices
iteratively until all vertices can be merged to a single (gigantic)
genome sequence. Pregelix’s support for the addition and removal
of vertices is heavily used in this use case.

7. EXPERIMENTS
This section compares Pregelix with several other popular par-

allel graph processing systems, including Giraph [4], Hama [6],

public class ShortestPathsVertex extends Vertex<VLongWritable, DoubleWritable,
 FloatWritable, DoubleWritable> {
 /** The source id key */
 public static final String SOURCE_ID = "pregelix.sssp.sourceId";
 /** The value to be sent to neighbors*/
 private DoubleWritable outputValue = new DoubleWritable();
 /** the source vertex id */
 private long sourceId = -1;

 @Override
 public void configure(Configuration conf) {
 sourceId = conf.getLong(SOURCE_ID, 1);
 }

 @Override
 public void compute(Iterator<DoubleWritable> msgIterator) {
 if (getSuperstep() == 1) {
 getVertexValue().set(Double.MAX_VALUE);
 }
 double minDist = getVertexId().get() == sourceId? 0.0 : Double.MAX_VALUE;
 while (msgIterator.hasNext()) {
 minDist = Math.min(minDist, msgIterator.next().get());
 }
 if (minDist < getVertexValue().get()) {
 getVertexValue().set((minDist);
 for (Edge<VLongWritable, FloatWritable> edge : getEdges()) {
 outputValue.set(minDist + edge.getEdgeValue().get());
 sendMsg(edge.getDestVertexId(), outputValue);
 }
 }
 voteToHalt();
 }

 public static void main(String[] args) throws Exception {
 PregelixJob job = new PregelixJob(ShortestPathsVertex.class.getSimpleName());
 job.setVertexClass(ShortestPathsVertex.class);
 job.setVertexInputFormatClass(SimpleTextInputFormat.class);
 job.setVertexOutputFormatClass(SimpleTextOutputFormat.class);
 job.setMessageCombinerClass(DoubleMinCombiner.class);

 /** Hints for the Pregelix plan generator */
 job.setMessageVertexJoin(Join.LEFTOUTER);
 job.setMessageGroupBy(GroupBy.HASHSORT);
 job.setMessageGroupByConnector(Connector.UNMERGE);

 Client.run(args, job);
 }
}

Figure 9: The implementation of the single source shortest
paths algorithm on Pregelix.

GraphLab [31], and GraphX [40]. Our comparisons cover execu-
tion time (Section 7.2), scalability (Section 7.3), throughput (Sec-
tion 7.4), plan flexibility (Section 7.5), and software simplicity
(Section 7.6). We conclude this section by summerizing our ex-
perimental results (Section 7.7).

7.1 Experimental Setup
We ran the experiments detailed here on a 32-node Linux IBM

x3650 cluster with one additional master machine of the same con-
figuration. Nodes are connected with a Gigabit Ethernet switch.
Each node has one Intel Xeon processor E5520 2.26GHz with four
cores, 8GB of RAM, and two 1TB, 7.2K RPM hard disks.

In our experiments, we leverage two real-world graph-based
datasets. The first is the Webmap dataset [41] taken from a crawl
of the web in the year 2002. The second is the BTC dataset [18],
which is a undirected semantic graph converted from the original
Billion Triple Challenge 2009 RDF dataset [2]. Table 3 (Webmap)
and Table 4 (BTC) show statistics for these graph datasets, includ-
ing the full datasets as well as several down-samples and scale-ups7

that we use in our experiments.
Our evaluation examines the platforms’ performance character-

istics of three algorithms: PageRank [35], SSSP (single source
7We used a random walk graph sampler built on top of Pregelix to
create scaled-down Webmap sample graphs of different sizes. To
scale up the BTC data size, we deeply copied the original graph
data and renumbered the duplicate vertices with a new set of iden-
tifiers.

Name Size #Vertices #Edges Avg. Degree
Large 71.82GB 1,413,511,390 8,050,112,169 5.69

Medium 31.78GB 709,673,622 2,947,603,924 4.15
Small 14.05GB 143,060,913 1,470,129,872 10.27

X-Small 9.99GB 75,605,388 1,082,093,483 14.31
Tiny 2.93GB 25,370,077 318,823,779 12.02

Table 3: The Webmap dataset (Large) and its samples.
Name Size #Vertices #Edges Avg. Degree
Large 66.48GB 690,621,916 6,177,086,016 8.94

Medium 49.86GB 517,966,437 4,632,814,512 8.94
Small 33.24GB 345,310,958 3,088,543,008 8.94

X-Small 16.62GB 172,655,479 1,544,271,504 8.94
Tiny 7.04GB 107,706,280 607,509,766 5.64

Table 4: The BTC dataset (X-Small) and its samples/scale-ups.

shortest paths) [23], and CC (connected components) [23]. On
Pregelix and Giraph, the graph algorithms were coded in Java and
all their source code can be found in the Pregelix codebase8. The
implementations of the three algorithms on Hama, GraphLab, and
GraphX are directly borrowed from their builtin examples. The
Pregelix default plan, which uses index full outer join, sort-based
group-by, an m-to-n hash partitioning connector, and B-tree ver-
tex storage, is used in Sections 7.2, 7.3, and 7.4. Pregelix’s de-
fault maximum buffer cache size for access methods is set to 1

4
the physical RAM size, and its default maximum allowed buffer
for each group-by operator instance is set to 64MB. These two de-
fault Pregelix memory settings are used in all the experiments. For
the local file system for Pregelix, we use the ext3 file system; for
the distributed file system, we use HDFS version 1.0.4. In all ex-
periments, we use the latest Giraph trunk version (the revision at
Aug 26 11:35:14 2014), Hama version 0.6.4, GraphLab version
2.2 (PowerGraph), and Spark [44] version 0.9.1 for GraphX. Our
GraphLab setting has been confirmed by its primary author. We
tried our best to let each system use all the CPU cores and all avail-
able RAM on each worker machine.

7.2 Execution Time
In this experiment, we evaluate the execution times of all sys-

tems by running each of the three algorithms on the 32-machine
cluster. As the input data for PageRank we use the Webmap dataset
because PageRank is designed for ranking web pages, and for the
SSSP and CC algorithms we use the BTC dataset. Since a Giraph
user needs to explicitly specify apriori whether a job is in-memory
or out-of-core, we measure both of these settings (labeled Giraph-
mem and Giraph-ooc, respectively) for Giraph jobs regardless of
the RAM size.

Figure 10 plots the resulting overall Pregel job execution times
for the different sized datasets, and Figure 11 shows the average
per-iteration execution time for all iterations. In both figures, the
x-axis is the input dataset size relative to the cluster’s aggregated
RAM size, and the y-axis is the execution time. (Note that the
volume of exchanged messages can exhaust memory even if the
initial input graph dataset can fit into memory.)

Figure 10 and Figure 11 show that while Pregelix scales to out-
of-core workloads, Giraph fails to run the three algorithms once the
relative dataset size exceeds 0.15, even with its out-of-core setting
enabled. Figures 10(a)(c) and 11(a)(c) show that when the compu-
tation has sufficient memory, Pregelix offers comparable execution
time to Giraph for message-intensive workloads such as PageRank
and CC. For PageRank, Pregelix runs up to 2× slower than Giraph
on relatively small datasets like Webmap-Small. For CC, Pregelix
runs up to 1.7× faster than Giraph on relatively small datasets
like BTC-Small. Figure 10(b) and Figure 11(b) demonstrate that
8https://code.google.com/p/hyracks/source/browse/pregelix

 0

 1000

 2000

 3000

 4000

 0 0.05 0.1 0.15 0.2 0.25 0.3E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
s
)

Dataset Size / Aggregated RAM

Pregelix
Giraph-mem

Giraph-ooc

GraphLab
GraphX

Hama

 1

 10

 100

 1000

 10000

 0 0.05 0.1 0.15 0.2 0.25 0.3E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
s
)

Dataset Size / Aggregated RAM

Pregelix
Giraph-mem

Giraph-ooc

GraphLab
Hama

 0
 2000
 4000
 6000
 8000

 10000
 12000

 0 0.05 0.1 0.15 0.2 0.25 0.3E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
s
)

Dataset Size / Aggregated RAM

Pregelix
Giraph-mem

Giraph-ooc

GraphLab
Hama

(a) PageRank for Webmap datasets (b) SSSP for BTC datasets (c) CC for BTC datasets

Figure 10: Overall execution time (32-machine cluster). Neither Giraph-mem nor Giraph-ooc can work properly (both keep failing
and re-running tasks) when the ratio of dataset size to the aggregated RAM size exceeds 0.15; GraphLab starts failing when the
ratio of dataset size to the aggregated RAM size exceeds 0.07; Hama fails on even smaller datasets; GraphX keeps failing because of
memory management issues when it runs over the smallest BTC dataset sample BTC-Tiny.

 0
 100
 200
 300
 400
 500
 600

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
g

 I
te

ra
ti
o

n
 T

im
e

 (
S

e
c
s
)

Dataset Size / Aggregated RAM

Pregelix
Giraph-mem

Giraph-ooc

GraphLab
GraphX

Hama

 0.1

 1

 10

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
g

 I
te

ra
ti
o

n
 T

im
e

 (
S

e
c
s
)

Dataset Size / Aggregated RAM

Pregelix
Giraph-mem

Giraph-ooc

GraphLab
Hama

 0

 30

 60

 90

 120

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
g

 I
te

ra
ti
o

n
 T

im
e

 (
S

e
c
s
)

Dataset Size / Aggregated RAM

Pregelix
Giraph-mem

Giraph-ooc

GraphLab
Hama

(a) PageRank for Webmap datasets (b) SSSP for BTC datasets (c) CC for BTC datasets

Figure 11: Average iteration execution time (32-machine cluster).

the Pregelix default plan offers 3.5× overall speedup and 7× per-
iteration speedup over Giraph for message-sparse workloads like
SSSP even for relatively small datasets. All sub-figures in Fig-
ure 10 and Figure 11 show that for in-memory workloads (when the
relative dataset size is less than 0.15), Giraph has steeper (worse)
size-scaling curves than Pregelix.

Compared to Giraph, GraphLab, GraphX, and Hama start fail-
ing on even smaller datasets, with even steeper size-scaling curves.
GraphLab has the best average per-iteration execution time on
small datasets (e.g., up to 5× faster than Pregelix and up to 12×
faster than Giraph, on BTC-Tiny), but performs worse than Giraph
and Pregelix on larger datasets (e.g., up to 24× slower than Pregelix
and up to 6× slower than Giraph, on BTC-X-Small). GraphX keeps
failing because of memory management issues during processing
the smallest BTC dataset BTC-Tiny for SSSP and CC on the 32-
machine cluster, thus its results for both algorithms are missing.

7.3 System Scalability
Our system scalability experiments run the different systems on

varying sized clusters for each of the different dataset sizes. Fig-
ure 12(a) plots the parallel speedup for PageRank on Pregelix going
from 8 machines to 32 machines. The x-axis is the number of ma-
chines, and the y-axis is the average per-iteration execution time
relative to the time on 8 machines. As the number of machines
increases, the message combiner for PageRank becomes less ef-
fective and hence the total volume of data transferred through the
network gets larger, though the CPU load of each individual ma-
chine drops. Therefore, in Figure 12(a), the parallel speedups are
close to but slightly worse than the “ideal” case in which there are
no message overheads among machines. For the other systems,
the PageRank implementations for GraphLab and GraphX fail to
run Webmap samples beyond the 9.99GB case when the number of
machines is 16; Giraph has the same issue when the number of ma-

chines is 8. Thus, we were only able to compare the parallel PageR-
ank speedups of Giraph, GraphLab, GraphX, and Pregelix with the
Webmap-X-Small dataset. The results of this small data case are in
Figure 12(b); Hama is not included because it cannot run even the
Webmap-X-Small dataset on any of our cluster configurations. The
parallel speedup of Pregelix is very close to the ideal line, while
Giraph, GraphLab, and GraphX exhibit even better speedups than
the ideal. The apparent super-linear parallel speedups of Giraph,
GraphLab, and GraphX are consistent with the fact that they all
perform super-linearly worse when the volume of data assigned to
a slave machine increases, as can be seen in Figures 10 and 11.

Figure 12(c) shows the parallel scale up of the three algorithms
for Pregelix. Giraph, GraphLab, GraphX, and Hama results are not
shown because they cannot succussfully run these cases. In this
figure, the x-axis is the ratio of the sampled (or scaled) dataset size
over the largest (Webmap-Large or BTC-Large) dataset size. The
number of machines is proportional to this ratio and 32 machines
are used for scale 1.0. The y-axis is the average per-iteration execu-
tion time relative to the time at the smallest scale. In the ideal case,
the y-axis value would stay at 1.0 for all the scales, while in reality,
the three Pregel graph algorithms all incur network communication
and thus cannot achieve the ideal. The SSSP algorithm sends fewer
messages than the other two algorithms, so it is the closest to the
ideal case.

7.4 Throughput
In the current version of GraphLab, Hama, and Pregelix, each

submitted job is executed immediately, regardless of the current
activity level on the cluster. Giraph leverages Hadoop’s admission
control; for the purpose of testing concurrent workloads, we let
the number of Hadoop map task slots in each task tracker be 3.
GraphX leverages the admission control of Spark, such that jobs
will be executed sequentially if available resources cannot meet the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 8 16 24 32R
e
la

ti
v
e
 A

v
g
 I
te

ra
ti
o
n
 T

im
e

Number Of Machines

X-small
Small

Medium
Large
Ideal

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 8 16 24 32R
e
la

ti
v
e
 A

v
g
 I
te

ra
ti
o
n
 T

im
e

Number of Machines

Pregelix
Giraph-mem

GraphLab
GraphX

Ideal

 0

 1

 2

 3

 0.25 0.5 0.75 1R
e
la

ti
v
e
 A

v
g
 I
te

ra
ti
o
n
 T

im
e

Scale

PageRank
CC

SSSP
Ideal

(a) Pregelix Speedup (PageRank) (b) Speedup (PageRank) for Webmap-X-Small (c) Pregelix Scaleup (PageRank, SSSP, CC)

Figure 12: Scalability (run on 8-machine, 16-machine, 24-machine, 32-machine clusters).

 0

 5

 10

 15

 20

 1 2 3J
o

b
s
 P

e
r

H
o

u
r

(j
p

h
)

Number of Concurrent Jobs

Pregelix
Giraph-mem

GraphLab

GraphX
Hama

 0

 4

 8

 12

 16

 1 2 3J
o

b
s
 P

e
r

H
o

u
r

(j
p

h
)

Number of Concurrent Jobs

Pregelix
Giraph-mem

GraphLab

GraphX
Hama

 0
 1
 2
 3
 4
 5
 6

 1 2 3J
o

b
s
 P

e
r

H
o

u
r

(j
p

h
)

Number of Concurrent Jobs

Pregelix
Giraph-mem

GraphLab

GraphX
Hama

 0
 0.5

 1
 1.5

 2
 2.5

 3

 1 2 3J
o

b
s
 P

e
r

H
o

u
r

(j
p

h
)

Number of Concurrent Jobs

Pregelix
Giraph-mem

GraphLab

GraphX
Hama

(a) Webmap-X-Small (always
in-memory)

(b) Webmap-Small (in-memory
to minor disk usage)

(c) Webmap-Medium (in-
memory to disk-based)

(d) Webmap-Large (always
disk-based)

Figure 13: Throughput (multiple PageRank jobs are executed in the 32-machine cluster with different sized datasets).

overall requirements of concurrent jobs. In this experiment, we
compare the job throughput of all the systems by submitting jobs
concurrently. We ran PageRank jobs on the 32-machine cluster us-
ing four different samples of the Webmap dataset (X-Small, Small,
Medium, and Large) with various levels of job concurrency. Fig-
ure 13 reports how the number of completed jobs per hour (jph)
changes with the number of concurrent jobs. The results for the
four Webmap samples represent four different cases respectively:

• Figure 13(a) uses Webmap-X-Small. Moving from serial job ex-
ecution to concurrent job execution, data processing remains in-
memory but the CPU resources go from dedicated to shared. In
this case, Pregelix achieves a higher jph when there are two or
three concurrent jobs than when job execution is serial.
• Figure 13(b) uses Webmap-Small. In this case, serial job exe-

cution does in-memory processing, but concurrent job execution
introduces a small amount of disk I/O due to spilling. When two
jobs run concurrently, each job incurs about 1GB of I/O; when
three jobs run concurrently, each does about 2.7GB of I/O. In this
situation, still, the Pregelix jph is higher in concurrent execution
than in serial execution.
• Figure 13(c) uses Webmap-Medium. In this case, serial job exe-

cution allows for in-memory processing, but allowing concurrent
execution exhausts memory and causes a significant amount of
I/O for each individual job. For example, when two jobs run con-
currently, each job incurs about 10GB of I/O; when three jobs
run concurrently, each job does about 27GB of I/O. In this case,
jph drops significantly at the boundary where I/O significantly
comes into the picture. The point with two concurrent jobs is
such a boundary for Pregelix in Figure 13(c).
• Figure 13(d) uses the full Webmap (Webmap-Large). In this

case, processing is always disk-based regardless of the concur-
rency level. For this case, Pregelix jph once again increases with
the increased level of concurrency; this is because the CPU uti-
lization is increased (by about 20% to 30%) with added concur-
rency.

These results suggest that it would be worthwhile to develop in-
telligent job admission control policies to make sure that Pregelix
runs with the highest possible throughput all the time in our future

work. In our experiments, the Spark scheduler for GraphX always
runs concurrent jobs sequentially due to the lack of memory and
CPU resources. Giraph, GraphLab, and Hama all failed to support
concurrent jobs in our experiments for all four cases due to limita-
tions regarding memory management and out-of-core support; they
each need additional work to operate in this region.

7.5 Plan Flexibility
In our final experiment, we compare several different physical

plan choices in Pregelix to demonstrate their usefulness. We ran
the two join plans (described in Section 5.3.2) for the three Pregel
graph algorithms. Figure 14 shows the results. For message-sparse
algorithms like SSSP (Figure 14(a)), the left outer join Pregelix
plan is much faster than the (default) full outer join plan. However,
for message-intensive algorithms like PageRank (Figure 14(b)), the
full outer join plan is the winner. This is because although the
probe-based left outer join can avoid a sequential index scan, it
needs to search the index from the root node every time; this is not
worthwhile if most data in the leaf nodes will be qualified as join
results. The CC algorithm’s execution starts with many messages,
but the message volume decreases significantly in its last few su-
persteps, and hence the two join plans result in similar performance
(Figure 14(c)). Figure 15 revisits the relative performance of the
systems by comparing Pregelix’s left outer join plan performance
against the other systems. As shown in the figure, SSSP on Pregelix
can be up to 15× faster than on Giraph and up to 35× faster than
on GraphLab for the average per-iteration execution time.

In addition to the experiments presented here, an earlier techni-
cal report [13] measured the performance difference introduced by
the two different Pregelix data redistribution policies (as described
in Section 5.3.1) for combining messages on a 146-machine cluster
in Yahoo! Research. Figure 9 in the report [13] shows that the m-
to-n hash partitioning merging connector can lead to slightly faster
executions on small clusters, but merging input streams at the re-
ceiver side needs to selectively wait for data to arrive from specific
senders as dictated by the priority queue, and hence it becomes
slower on larger clusters. The tradeoffs seen here and in the tech-
nical report [13] for different physical choices are evidence that an

 0

 20

 40

 60

 80

 0 0.3 0.6 0.9 1.2

A
v
g
 I
te

ra
ti
o
n
 T

im
e
 (

S
e
c
s
)

Dataset Size / Aggregated RAM

Left Outer Join
Full Outer Join

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1 1.2

A
v
g
 I
te

ra
ti
o
n
 T

im
e
 (

S
e
c
s
)

Dataset Size / Aggregated RAM

Left Outer Join
Full Outer Join

 0

 90

 180

 270

 360

 0 0.3 0.6 0.9 1.2

A
v
g
 I
te

ra
ti
o
n
 T

im
e
 (

S
e
c
s
)

Dataset Size / Aggregated RAM

Left Outer Join
Full Outer Join

(a) SSSP for BTC datasets (b) PageRank for Webmap datasets (c) CC for BTC datasets

Figure 14: Index full outer join vs. index left outer join (run on an 8 machine cluster) for Pregelix.

 0.1

 1

 10

 100

 0 0.09 0.18 0.27 0.36 0.45

A
v
g
 I
te

ra
ti
o
n
 T

im
e
 (

S
e
c
s
)

Dataset Size / Aggregated RAM

Pregelix-LOJ
Giraph-mem

GraphLab

Hama

 0.1

 1

 10

 100

 0 0.08 0.16 0.24 0.32

A
v
g
 I
te

ra
ti
o
n
 T

im
e
 (

S
e
c
s
)

Dataset Size / Aggregated RAM

Pregelix-LOJ
Giraph-mem

GraphLab

Hama

(a) 24-Machine Cluster (b) 32-Machine Cluster

Figure 15: Pregelix left outer join plan vs. other systems (SSSP
on BTC datasets). GraphX hungs because of memory manage-
ment issues when it runs over the smallest dataset.

optimizer is ultimately essential to identify the best physical plan
to use in order to efficiently execute Pregel programs.

7.6 Software Simplicity
To highlight the benefit of building a Pregel implementation on

top of an existing dataflow runtime, as opposed to writing one from
scratch, we can compare lines of code in the Pregelix and Giraph
systems’ core modules (excluding their test code and comments).
The Giraph-core module, which implements the Giraph infrastruc-
ture, contains 32,197 lines of code. Its counterpart in Pregelix con-
tains just 8,514 lines of code.

7.7 Summary
Our experimental results show that Pregelix can perform compa-

rably to Giraph for memory-resident message-intensive workloads
(like PageRank), can outperform Giraph by over an order of mag-
nitude for memory-resident message-sparse workloads (like sin-
gle source shortest paths), can scale to larger datasets, can sustain
multi-user workloads, and also can outperform GraphLab, GraphX,
and Hama by over an order of magnitude on large datasets for var-
ious workloads. In addition to the numbers reported in this paper,
an early technical report [13] gave speedup and scale-up results for
the first alpha release of Pregelix on a 146-machine Yahoo! Re-
search cluster in March 2012; that study first showed us how well
the Pregelix architectural approach can scale.

8. RELATED WORK
The Pregelix system is related to or built upon previous works

from three areas.
Parallel data management systems such as Gamma [21], Ter-

adata [8], and GRACE [25] applied partitioned-parallel process-
ing to SQL query processing over two decades ago. The intro-
duction of Google’s MapReduce system [20], based on similar
principles, led to the recent flurry of work in MapReduce-based
data-intensive computing. Systems like Dryad [30], Hyracks [12],

and Nephele [11] have successfully made the case for support-
ing a richer set of data operators beyond map and reduce as well
as a richer set of data communication patterns. REX [33] inte-
grated user-defined delta functions into SQL to support arbitrary
recursions and built stratified parallel evaluations for recursions.
The Stratosphere project also proposed an incremental iteration
abstraction [24] using working set management and integrated it
with parallel dataflows and job placement. The lessons and experi-
ences from all of these systems provided a solid foundation for the
Pregelix system.

Big Graph processing platforms such as Pregel [32], Gi-
raph [4], and Hama [6] have been built to provide vertex-oriented
message-passing-based programming abstractions for distributed
graph algorithms to run on shared-nothing clusters. Sedge [43] pro-
posed an efficient advanced partitioning scheme to minimize inter-
machine communications for Pregel computations. Surfer [17] is a
Pregel-like prototype using advanced bandwidth-aware graph par-
titioning to minimize the network traffic in processing graphs. In
seeming contradiction to these favorable results on the efficacy of
smart partitioning, literature [29] found that basic hash partition-
ing works better because of the resulting balanced load and the low
partitioning overhead. We seem to be seeing the same with re-
spect to GraphLab, i.e., the pain is not being repaid in performance
gain. GPS [36] optimizes Pregel computations by dynamically
repartitioning vertices based on message patterns and by splitting
high-degree vertices across all worker machines. Giraph++ [38]
enhanced Giraph with a richer set of APIs for user-defined parti-
tioning functions so that communication within a single partition
can be bypassed. GraphX [40] provides a programming abstrac-
tion called Resident Distributed Graphs (RDGs) to simplify graph
loading, construction, transformation, and computations, on top of
which Pregel can be easily implemented. Different from Pregel,
GraphLab [31] provides a vertex-update-based programming ab-
straction and supports an asynchronous model to increase the level
of pipelined parallelism. Trinity [37] is a distributed graph pro-
cessing engine built on top of a distributed in-memory key-value
store to support both online and offline graph processing; it opti-
mizes message-passing in vertex-centric computations for the case
where a vertex sends messages to a fixed set of vertices. Our work
on Pregelix is largely orthogonal to these systems and their con-
tributions because it looks at Pregel at a lower architectural level,
aiming at better out-of-core support, plan flexibility, and software
simplicity.

Iterative extensions to MapReduce like HaLoop [15] and
PrIter [46] were the first to extend MapReduce with looping con-
structs. HaLoop hardcodes a sticky scheduling policy (similar to
the one adopted here in Pregelix and to the one in Stratosphere [24])
into the Hadoop task scheduler so as to introduce a caching abil-
ity for iterative analytics. PrIter uses a key-value storage layer to
manage its intermediate MapReduce state, and it also exposes user-

defined policies that can prioritize certain data to promote fast al-
gorithmic convergence. However, those extensions still constrain
computations to the MapReduce model, while Pregelix explores
more flexible scheduling mechanisms, storage options, operators,
and several forms of data redistribution (allowed by Hyracks) to
optimize a given Pregel algorithm’s computation time.

9. CONCLUSIONS
This paper has presented the design, implementation, early use

cases, and evaluation of Pregelix, a new dataflow-based Pregel-
like system built on top of the Hyracks parallel dataflow engine.
Pregelix combines the Pregel API from the systems world with
data-parallel query evaluation techniques from the database world
in support of Big Graph Analytics. This combination leads to effec-
tive and transparent out-of-core support, scalability, and through-
put, as well as increased software simplicity and physical flexi-
bility. To the best of our knowledge, Pregelix is the only open
source Pregel-like system that scales to out-of-core workloads effi-
ciently, can sustain multi-user workloads, and allows runtime flex-
ibility. This sort of architecture and methodology could be adopted
by parallel data warehouse vendors (such as Teradata [8], Piv-
otal [7], or Vertica [9]) to build Big Graph processing infrastruc-
tures on top of their existing query execution engines. Last but not
least, we have made several stable releases of the Pregelix system
(http://pregelix.ics.uci.edu) in open source form since the year 2012
for use by the Big Data research community, and we invite others to
download and try the system. As future work, we plan to automate
physical plan selection via a cost-based optimizer (similar to liter-
ature [28]) and we plan to integrate Pregelix with AsterixDB [1] to
support richer forms of Big Graph Analytics.

Acknowledgements
Pregelix has been supported by a UC Discovery grant, NSF IIS
awards 0910989 and 1302698, and NSF CNS awards 1305430,
1351047, and 1059436. Yingyi Bu is supported in part by a Google
Fellowship award. The AsterixDB project has enjoyed industrial
support from Amazon, eBay, Facebook, Google, HTC, Microsoft,
Oracle Labs, and Yahoo!. We also thank the following people
who tried Pregelix at the early stage, reported bugs, hardened the
system, and gave us feedback: Jacob Biesinger, Da Yan, Anbang
Xu, Nan Zhang, Vishal Patel, Joe Simons, Nicholas Ceglia, Khanh
Nguyen, Hongzhi Wang, James Cheng, Chen Li, Xiaohui Xie, and
Harry Guoqing Xu. Finally, we thank Raghu Ramakrishnan for
discussing this work with us and sponsoring our access to a Yahoo!
cluster for scale-testing early versions of the system.

10. REFERENCES
[1] AsterixDB. http://asterixdb.ics.uci.edu.
[2] BTC. http://km.aifb.kit.edu/projects/btc-2009/.
[3] Genomix. https://github.com/uci-cbcl/genomix.
[4] Giraph. http://giraph.apache.org/.
[5] Hadoop/HDFS. http://hadoop.apache.org/.
[6] Hama. http://hama.apache.org/.
[7] Pivotal. http://www.gopivotal.com/products/

pivotal-greenplum-database.
[8] Teradata. http://www.teradata.com.
[9] Vertica. http://www.vertica.com.

[10] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive
query processing strategies. In SIGMOD, pages 16–52, 1986.

[11] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke.
Nephele/pacts: a programming model and execution framework for web-scale
analytical processing. In SoCC, pages 119–130, 2010.

[12] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A
flexible and extensible foundation for data-intensive computing. In ICDE, pages
1151–1162, 2011.

[13] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie, M. Weimer,
and R. Ramakrishnan. Scaling datalog for machine learning on big data. CoRR,
abs/1203.0160, 2012.

[14] Y. Bu, V. R. Borkar, G. H. Xu, and M. J. Carey. A bloat-aware design for big
data applications. In ISMM, pages 119–130, 2013.

[15] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: Efficient iterative
data processing on large clusters. PVLDB, 3(1):285–296, 2010.

[16] S. Chaudhuri. An overview of query optimization in relational systems. In
PODS, pages 34–43, 1998.

[17] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li. Improving large graph
processing on partitioned graphs in the cloud. In SoCC, page 3, 2012.

[18] J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing of distance queries
in large graphs: a vertex cover approach. In SIGMOD Conference, pages
457–468, 2012.

[19] D. Comer. The ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, 1979.
[20] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large

clusters. In OSDI, pages 137–150, 2004.
[21] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao, and

R. Rasmussen. The Gamma database machine project. IEEE Trans. Knowl.
Data Eng., 2(1):44–62, 1990.

[22] D. J. DeWitt and J. Gray. Parallel database systems: The future of high
performance database systems. Commun. ACM, 35(6):85–98, 1992.

[23] S. Even. Graph Algorithms. Cambridge University Press, New York, NY, USA,
2nd edition, 2011.

[24] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning fast iterative data
flows. PVLDB, 5(11):1268–1279, 2012.

[25] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the system
software of a parallel relational database machine grace. In VLDB, pages
209–219, 1986.

[26] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel
algorithms. J. Parallel Distrib. Comput., 22(2):251–267, 1994.

[27] G. Graefe. Query evaluation techniques for large databases. ACM Comput.
Surv., 25(2):73–170, 1993.

[28] H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based
optimization of mapreduce programs. PVLDB, 4(11):1111–1122, 2011.

[29] I. Hoque and I. Gupta. LFGraph: Simple and fast distributed graph analytics. In
TRIOS, 2013.

[30] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In EuroSys, pages
59–72, 2007.

[31] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Distributed GraphLab: A framework for machine learning in the cloud.
PVLDB, 5(8):716–727, 2012.

[32] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD
Conference, pages 135–146, 2010.

[33] S. R. Mihaylov, Z. G. Ives, and S. Guha. REX: Recursive, delta-based
data-centric computation. PVLDB, 5(11):1280–1291, 2012.

[34] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured
merge-tree (LSM-tree). Acta Inf., 33(4):351–385, 1996.

[35] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab,
November 1999.

[36] S. Salihoglu and J. Widom. GPS: a graph processing system. In SSDBM,
page 22, 2013.

[37] B. Shao, H. Wang, and Y. Li. Trinity: a distributed graph engine on a memory
cloud. In SIGMOD Conference, pages 505–516, 2013.

[38] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson. From “think
like a vertex” to “think like a graph”. PVLDB, 7(3):193–204, 2013.

[39] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley,
S. Radia, B. Reed, and E. Baldeschwieler. Apache Hadoop YARN: yet another
resource negotiator. In SoCC, page 5, 2013.

[40] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. GraphX: a resilient
distributed graph system on spark. In GRADES, page 2, 2013.

[41] Yahoo! Webscope Program. http://webscope.sandbox.yahoo.com/.
[42] D. Yan, J. Cheng, K. Xing, W. Ng, and Y. Bu. Practical pregel algorithms for

massive graphs. In Technique Report, CUHK, 2013.
[43] S. Yang, X. Yan, B. Zong, and A. Khan. Towards effective partition

management for large graphs. In SIGMOD Conference, pages 517–528, 2012.
[44] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computingt. In NSDI, 2012.

[45] D. R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read
assembly using de bruijn graphs. Genome Research In Genome Research,
18(5):821–829, 2008.

[46] Y. Zhang, Q. Gao, L. Gao, and C. Wang. PrIter: a distributed framework for
prioritized iterative computations. In SoCC, page 13, 2011.

