
Pregelix: Dataflow-Based Big Graph Analytics

Yingyi Bu
University of California, Irvine

yingyib@ics.uci.edu

1. PROBLEM
Recently, Google has proposed the Pregel programming

model [2] for Big Graph analytics, where application pro-
grammers need no knowledge of parallel or distributed sys-
tems. Instead, they just need to “think like a vertex” and
write a few functions that encapsulate the logic for what one
graph vertex does. The vertex-oriented programming model
has been found to ease the implementation of distributed
graph algorithms to a great extent.

There are several efforts (e.g., [1, 4]) to build Pregel-like
systems from scratch. However, building such a system is
complicated because a complete implementation must con-
sider network issues, memory management, message deliv-
ery, parallel task scheduling, fault-tolerance, vertex storage,
and out-of-core support. Moreover, if the system developer
wants to support different runtime execution choices, do-
ing that in the built-from-scratch world would add still more
complexity.

2. THE PREGELIX APPROACH
In this work, instead of building a Pregel system from

scratch, we explore an architectural alternative — express-
ing Pregel’s semantics as database-style dataflows and exe-
cuting them on a general-purpose data-parallel engine using
classical parallel query evaluation techniques. We have used
this approach to build Pregelix — a dataflow-based Pregel
implementation for Big Graph analytics. Pregelix examines
the value of a “one-size-fits-a-bunch” philosophy, demon-
strating that a general execution engine can also support Big
Graph analytics well.

Copyright c© Permission to make digital or hard copies of part
or all of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party compo-
nents of this work must be honored. For all other uses, contact the
Owner/Author. Copyright is held by the owner/author(s).

SoCC’13, 1–3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1. http://dx.doi.org/10.1145/2523616.2525962

The design and implementation of Pregelix explore and
answer two research questions: 1. In order to efficiently sup-
port Big Graph analytics, what the necessary extensibility
does a data-parallel query execution engine need to provide?
2. Given an extensible data-parallel execution engine, how
should one implement Pregel on top of it and what are the
possible optimizations?

For the first research question, there are two extensibility
requirements for the query execution engine:

• Support for user-defined operators, such as read-
ing/writing from distributed file systems and setting up
user-defined (Pregel-specific) job contexts,

• User-configurable task scheduling, with which one can
implement sticky scheduling to leverage locally cached
data on each cluster machine.

Based on these two requirements, we chose Hyracks [3]
as the runtime execution engine for Pregelix. Regarding the
second research question, we have been exploring several
key design issues:

• Pregel as dataflows. Inside Pregelix, both vertices and
messages are treated as tuples and Pregel’s semantics are
implemented by a query plan consisting of operators such
as joins and grouped aggregations.

• Vertex storage. We store vertices in partitioned B-trees,
either using standard B-trees or LSM-trees (log-structured
merge-trees).

• Runtime choices. Pregelix offers several logically equiv-
alent runtime execution alternatives and allows users to
choose among them. Each alternative is implemented as
data-parallel jobs.

3. KEY CONTRIBUTIONS
This work contains several key contributions. First, it

demonstrates the feasibility of using a database-style ap-
proach to implement the Pregel model in a simple architec-
ture. Second, we identified the extensibility requirements
for a parallel query execution engine to support Big Graph
analytics. Last but not least, we have released the Pregelix
system (http://hyracks.org/projects/pregelix/) in open source
form for use by the community.

1



4. REFERENCES
[1] Giraph. http://giraph.apache.org/.
[2] Grzegorz Malewicz et al. Pregel: a system for

large-scale graph processing. In SIGMOD, 2010.
[3] Vinayak R. Borkar et al. Hyracks: A flexible and

extensible foundation for data-intensive computing. In
ICDE, 2011.

[4] Yucheng Low et al. Distributed GraphLab: A
framework for machine learning in the cloud. PVLDB,
2012.

2


