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ABSTRACT
Lately there exist increasing demands for online abnormality mon-
itoring over trajectory streams, which are obtained from moving
object tracking devices. This problem is challenging due to the re-
quirement of high speed data processing within limited space cost.
In this paper, we present a novel framework for monitoring anoma-
lies over continuous trajectory streams. First, we illustrate the im-
portance of distance-based anomaly monitoring over moving object
trajectories. Then, we utilize the local continuity characteristics
of trajectories to build local clusters upon trajectory streams and
monitor anomalies via efficient pruning strategies. To further re-
duce the time cost, we propose a piecewise metric index structure
to reschedule the joining order of local clusters. Finally, our ex-
tensive experiments demonstrate the effectiveness and efficiency of
our methods.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Multimedia Databases;
H.2.8 [Database Management]: Database Applications—Data Min-
ing

General Terms
Algorithms, Design, Experimentation

Keywords
Outlier Detection, Similarity Search, Temporal Data

1. INTRODUCTION
Recently, trajectory mining has attracted much attention due to

its wide applications, especially in context-aware computing en-
vironment. Many researchers have worked on trajectory cluster-
ing [23] and classification [13]. Sometimes abnormal trajectories
tend to carry critical information of potential problems which re-
quire immediate attention and need be resolved at an early stage.
There are many applications that require real-time monitoring of
abnormal sequential patterns over streaming trajectories. Exam-
ples include elder care, child custody, accurate mobile localization,
automatic driving and so on. Below is a motivating example.
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EXAMPLE 1. Many senior citizens require constant monitoring
and care but such care is expensive without an automatic process.
Thus to continuously monitor anomalies of their trajectory streams
generated from mobile tracking devices will be very useful, espe-
cially when they go outdoor. Such anomalies are very rare pat-
terns that may indicate events such as taking a wrong bus, having
a bad fall, encountering a sudden slow-down and getting lost. If
their families could be notified in time, immediate and possible life-
saving actions can be taken. Figure 1 describes a typical scenario:
one day Bob’s father takes a strange detour (the red trajectory b)
compared to his usual route (the blue trajectory a); then Bob is
notified immediately about this abnormal case.

Figure 1: An Elder Monitoring Application
There are some nice solutions for problems like online event [15,

24], burst [32, 29], and novelty detection [25] over stream time se-
ries (or trajectories), where the respective definitions of anomalies
are: 1) distribution/model variations from assumed distribution, 2)
bursts with statistical aggregations exceeding a threshold, and 3)
abnormal classes by classification based on labeled data. Unfortu-
nately, none of the solutions for these anomalies could be extended
to find more general anomalies for a great number of applications,
because in a trajectory stream, 1) distribution is always changing,
2) burst is only one kind of anomalies, and 3) labeling data has a
huge cost. In the example described above, the anomalies are rare
patterns which would have big spatial deviations (distances) from
the normal trajectories in a certain temporal interval, like the red
trajectory (trajectory a) in Figure 1.

Thus, in this paper, we would like to focus on continuous mon-
itoring distance-based anomalies from trajectory streams, where
distance is used as a measure of (dis-)similarity between trajectory
subsequences. In fact, the usefulness of distance-based anoma-
lies for general databases has been thoroughly justified in previous
work [20] and [21].

Though distance-based anomalies are more general and effec-
tive, the performance of anomaly monitoring suffers from intensive
distance computations, thus efficient pruning strategies become es-
sential for streaming cases. Furthermore, targeting mobile appli-



cations, the proposed algorithm should require little extra memory.
Naïve solutions like sequential scan will result in excessive time
cost, while R-tree styled structures will incur huge memory con-
sumptions for indexing all subsequences extracted from a trajec-
tory, concomitant with high update cost. Even with dimensionality
reduction, the reduced representation for every subsequence will
occupy kr times more space than the original stream data, where kr

is the dimensionality after reduction. Therefore it is a challenging
problem to tame the computation and memory costs of distance-
based anomaly monitoring on trajectory streams.

In this paper, we make the following contributions:

• Efficient Anomaly Monitoring by Local Clusters: we build local
clusters for trajectories in a streaming manner, then anomalies
are detected by an efficient cluster join mechanism using pruning
strategies without introducing false dismissals.

• Piecewise Index for Rescheduling Cluster Join: to further im-
prove the performance, we design a piecewise VP-tree (vantage
point tree [10]) based index structure and reschedule the order of
cluster joins.

• Experimental Study: we test the proposed techniques on real
world as well as synthetic data. The results show that our anomaly
definition is much more useful than other known definitions and
our techniques can achieve orders of magnitude improvement in
performance compared to a simple pruning approach.

The rest of the paper is organized as follows. Related work is
discussed in Section 2. Section 3 states the problem. Section 4 in-
troduces a preliminary method and Section 5 introduces our prun-
ing methods by local clustering. Section 6 is about the piecewise
VP-tree based indexing and rescheduling technique. We present
extensive experimental evaluations in Section 7. We conclude in
Section 8.

2. RELATED WORK
In this section, we briefly review the related work in two relevant

areas: time series data management and anomaly detection.
Since trajectory is a special type of time series, we review some

work in time series databases. Agrawal et al.’s pioneering work [1]
uses DFT (discrete fourier transform) to reduce the dimensional-
ity of time series and then conducts the search in the reduced di-
mensional space. Later on, Faloutsos et al. [11] propose a general
frame work for similarity search over time series data, called GEM-
INI framework, to support subsequence matching. The main idea is
conducting the search in a filter and refine manner via lower bounds
derived from dimension reduction techniques. Subsequent work
includes various methods of dimension reduction for time series,
such as SVD [22], DWT [7], APCA [18], and Chebyshev Polyno-
mials [6], all of which guarantee no false dismissals. Meanwhile,
many novel and effective distance measures for (dis-)similarity be-
tween time series are proposed along with corresponding lower
bounds, such as DTW (dynamic time warping) [30], LCSS (longest
common subsequence) [28], ERP (edit distance with real penalty) [8],
EDR (edit distance on real sequence) [9] and probabilistic mea-
sure [31]. However, these techniques are designed for similarity
search. For anomaly detections in archive time series, Keogh et
al. [19] use SAX (symbol approximate aggregation) and heuristic
reorder on candidates to find discords. In their work, discords are
defined as sequences that have the furthest distances to their nearest
neighbors. A Trie structure is used to reduce the search time. How-
ever, in our new problem setting, the trie technique is no longer
applicable due to the changing feature of data and the high update
cost.

With emerging requirements on continuous stream time series
management, Zhu and Shasha [32] find statistics over a single stream
and correlations among multiple data streams, where incremental
DFT is used to prune uncorrelated stream pairs. Vlachos et al. [29]
identify bursts based on the computation of the moving average
(MA) and propose a novel burst similarity measure by MA and in-
tersections. Gao et al. [12] reduce I/O cost for continuous similarity
queries by pre-loading the predicted index pages and archived time
series into the allocated cache memory. Bulut et al. [5] provide
a well designed multi-resolution hierarchical index for monitoring
aggregate and similarity queries over a stream time series. How-
ever, none of the above work address the problem of monitoring
general anomalies along a stream time series or trajectory streams
where no fixed pattern exists.

A lot of research work has been conducted for mining distance-
based anomaly (outlier) in traditional databases [14]. The com-
mon solution for distance-based anomaly detection applies a nested
loop to count range neighbors for every anomaly candidate. Knorr
and Ng [20] develop a CELL-based method which can efficiently
locate anomalies in very large datasets, yet it is known that the
CELL-based method is not scalable to high-dimensional datasets
like time series. Ramaswamy et al. [26] rank top n anomalies
by distances(Dk(·)) to their k-th nearest neighbors, where a R∗-
tree is used for the k-nearest neighbors search of every point p
and a partition-based algorithm is proposed. However, the R∗-tree
method cannot be adapted to trajectory streams because it will suf-
fer from continuous high speed update and huge memory cost. Bay
et al. [3] search anomalies by a range neighbor search with a ran-
dom order, together with a simple pruning step, however, it is still
quite slow for trajectory streams since too many subsequences need
to be checked. Tao et al. [27] prove an upper bound for the mem-
ory consumption, which permits the discovery of all anomalies by
scanning the dataset three times, but it is not applicable to streams
where available data keep changing. Breunig et al. [4] propose the
concept of “local outliers”, according to which an object is an out-
lier if it is significantly different from its spatially nearby objects.
Jin et al. [16] propose efficient pruning strategies to find “top-k lo-
cal outliers” quickly. Different from “local outliers”, the anomalies
we monitor are those trajectory subsequences significantly differ-
ent from their spatial nearby ones in a certain temporal window,
which fit the feature of stream data.

To summarize, traditional anomaly definitions require the access
to a global and static database, which could not exist in stream
scenarios. In stream scenarios, data keep updating, but the lim-
ited memory can only store a limited “recent” sliding window. Of
course the solutions for static database anomalies could be applied
here, but from the experimental results, we could find that our solu-
tion considering the specific features of trajectory streams has got
orders of magnitude performance improvement to previous ones.

3. PROBLEM STATEMENT
Before we give the formal definition of the problem, we intro-

duce several terms used in this paper. For simplicity of illustration,
trajectories used in the following definitions are 1-dimensional, yet
we will see how they can be trivially extended for multi-dimensional
trajectories at the end of this section. We define a trajectory stream
as an totally ordered infinite sequences S ={s1, s2,..., st, ...},
where si is a real value arriving at a specific time tick i, and time
tick i is after time tick i − 1. Without loss of generality, in our
diagrams, the stream flow always comes from the right side.

Given a trajectory stream S, any subsequence B ={si, si+1,
..., si+wb−1} of S, is called a base window, where wb is a pre-
defined base window length. Given a base window B ={si, si+1,
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Figure 2: Illustration of the Trajectory Stream Model

..., si+wb−1} of trajectory stream S ={s1, s2,..., st, ...}, the sub-
sequence L ={si−wl , si−wl+1, ..., si−1} of length wl is defined
as B’s left sliding window, the subsequence R ={si+wb , si+wb+1,
..., si+wr−1} of length wr is defined as B’s right sliding window,
where wl and wr are pre-defined sliding window lengths. Figure 2
gives a visualized example about the basic constructs of trajectory
stream, base window, left sliding window and right sliding window.

DEFINITION 1 (DISTANCE). Distance(q, c) is a function that
has base window q and c as inputs and returns a nonnegative value
d, which is said to be the distance from q to c.

Without loss of generality, we take Euclidean distance as the dis-
tance measure in our implementations: for base window X and Y ,
distance(X , Y )=

√∑wb
i=1(Xi − Yi)2.

DEFINITION 2 (NEIGHBOR). Given a base window B ={sj ,
sj+1,...,sj+wb−1} which is a candidate currently to be judged whether
it is an anomaly, a trajectory stream S ={s1, s2,... ,sh} where
h ≥ wb, and distance threshold d, for any subsequence Si ={si,
si+1,..., si+wb−1} of S , if distance(B,Si) < d, we say that Si is
a neighbor of B in S .

DEFINITION 3 (TRAJECTORY STREAM ANOMALY). For a base
window B in S, we can get the number (n1) of B′s neighbors in its
left sliding window L, and the number (n2) of B′s neighbors in its
right sliding window R, then B is a trajectory stream anomaly if
n1 + n2 < k.

The basic problem is to determine if a base window B has less
than k neighbors in its left and right sliding windows, and if so,
B is an anomaly. The rationale behind Definition 3 is the observa-
tion that in real world applications, anomalies in a trajectory stream
usually not only have salient spatial deviations from both preced-
ing and succeeding normal subsequences, but also last for a short
period. In fact, other than the sliding window, the anomaly defini-
tion is the same as the distance-based outliers defined in [20]. In
other words, we adopt traditional distance-based anomaly in stream
scenarios. However, the solution proposed for detecting distance-
based anomalies in traditional static databases is not applicable to
trajectory streams due to high-speed data update of stream data.
Now we give an introductive definition of the anomaly monitoring
problem.

DEFINITION 4 (PROBLEM). On trajectory stream S, at every
time tick t, upon the arrival of st, we check whether the base win-
dow B ending at st−wr is a trajectory stream anomaly.

In practice, we recommend applications to take a vary large left
sliding window length wl and a short right slide window length wr

to ensure quick responses to anomalies, because for anomaly base
windows, part of the monitoring procedure for the base windows
is deferred to the time when its whole right sliding window comes
up. To extend our problem definition for a m-D trajectory stream,
we only need to extend the distance function: for base window X

and Y , distance(X, Y )=
√∑wb

i=1

∑m
j=1(Xi[j] − Yi[j])2.

4. A PRELIMINARY SOLUTION: SIMPLE
PRUNING

Obviously, directly computing the anomalies tick by tick is com-
putationally expensive. For each base window B in the trajectory
stream, we need n1 and n2, the numbers of neighbors in the left
and right sliding windows of B, respectively. If n1 + n2 < k then
B is an anomaly. One can adopt a more efficient method by ran-
dom sampling suggested by [3] for outlier detection in traditional
databases. To gather the count of neighbors one can repeatedly
pick some base window B′ in the left or right sliding window of
B in a random manner, and check whether B′ is B’s neighbor. If
B’s neighbor count reaches k, B is certified to be non-anomaly and
remaining search for B can be simply pruned. We call this ran-
dom sampling method simple pruning. Simple pruning can be seen
as a set of independent Bernoulli trials where we keep drawing
samples until k successes or the whole dataset is exhausted. The
following theorem [3] gives an analytic result of time cost by sim-
ple pruning.

THEOREM 1 (COST OF SIMPLE PRUNING). Let Fx(d) be the
probability that a randomly drawn sample lies within distance d to
base window x, Pa be the anomaly rate, N = wl + wr, let Y
be a random variable representing the number of trials (distance
computations) until we have k successes, and let P (Y = y) be
the probability of obtaining the k-th success on trial y. Then the
expectation of Y follows:

E(Y ) ≤ k

Fx(d)
+ PaN (1)

Since Pa is tiny, E(Y ) is dominated by k
Fx(d)

, which is inde-
pendent of the sliding window size. In most trajectory stream ap-
plications, data arrive at a very high speed, thus it is still of great
challenges for us to design exact and more efficient algorithms be-
yond simple pruning, in order to avoid data buffer overflow.

5. EFFICIENT MONITORING BY LOCAL
CLUSTERS

Our goal is to do better than the simple pruning technique. Our
idea is based on the observation that most trajectory streams are
locally continuous, so that two highly overlapping base windows
tend to have a short distance. We propose a local clustering-based
approach to monitor anomalies, which utilizes the property of lo-
cal continuity. In fact, many current time series/trajectory index-
ing methods have implicitly assumed the underline time series data
have the local continuity property. It is known that neither DFT [1],
DWT [7], APCA [18] for Euclidean distance, nor LB_Keogh [17],
LB_Zhu [33] for DTW distance could get a satisfactory pruning
power on a highly fluctuant time series or trajectories.

In Section 5.1, we introduce an online local clustering algorithm.
Then, batch monitoring is established with pruning strategies in
Section 5.2. Finally we give a detailed cost analysis in Section 5.3.

5.1 Incremental Local Clustering
In the following we define local cluster C as a trajectory subse-

quence of length at most mb in which there exists a base window B
that all other base windows in C are within a certain distance τ from
B. One such base window B is chosen as the pivot of C. Actually
local clusters are a special kind of temporal partitions on a trajec-
tory stream, and each cluster contains a number of consecutive data
points within a stream. We shall show that local clusters are easy to
build and can be incrementally updated, which fits the requirement



Algorithm Online Local Clustering
Input: latest base window Bnew , latest time tick t
Global variables: distance threshold τ , temporal constraint mb, boolean
pivotfound, current pivot pcurrent, current radius r, current left bin
L. (Initially pivotfound ← FALSE; pcurrent←NULL, r←0; L ←
φ.)
1: if pivotfound = FALSE then
2: (Comments: accumulate points in the left bin)
3: if the distance disti between Bnew and any base window Bi ending

in the current left bin > τ or current cluster size = mb then
4: the current left bin minus time tick t− 1 is the final left bin
5: set time tick t− 1 as the pivot pcurrent

6: pivotfound← TRUE
7: else
8: time tick t is added to the current left bin L
9: update r to be the greatest disti

10: end if
11: end if
12: if pivotfound then
13: (Comments: accumulate points in the right bin)
14: find distance dist between Bnew and the base window ending at

pcurrent

15: if dist > τ or current cluster size is mb then
16: time ticks in {pcurrent, ..., t− 1} ∪ L forms a local cluster
17: set current left bin L to {t}, r ← 0,
18: pcurrent ← NULL, pivotfound← FALSE
19: else
20: if dist > r then
21: r ← dist
22: end if
23: end if
24: end if

Figure 3: Online Local Clustering Procedure

of continuous trajectory streams perfectly. How to determine mb

and τ will be discussed later.

DEFINITION 5 (LOCAL CLUSTER). With a distance thresh-
old τ and a temporal constraint mb, given a sequence C = {si, si+1

, ..., sj}, j − i + 1 ≤ mb, which is a piece of a trajectory stream
S, if ∃sk ∈ C, ∀sx ∈ C, Bx and Bk being base windows ending at
sx and sk respectively, distance(Bk,Bx) ≤ τ , C is called a local
cluster.

DEFINITION 6 (PIVOT, RADIUS, LEFT BIN AND RIGHT BIN).
For a local cluster C of distance threshold τ , a special point sx ∈ C
is selected as C’s pivot, sx satisfies the condition that ∀si ∈ C,
Bx and Bi being base windows ending at sx and si respectively,
distance(Bx, Bi)≤ τ . The value of maximums∈Cdistance(sx, s)
is called C’s radius. Points whose time ticks are less (greater) than
x in C constitute pivot sx’s left bin (right bin).

The concepts of pivot, radius, left bin and right bin are used in the
algorithm of online local cluster construction. The parameter mb

specifies that at most how many based windows could be included
in a local cluster, while the parameter τ specifies the upper bound
of distances from the pivot to all base windows in the local cluster.
Both parameters need to be specified for local clustering.

In the data structure of a local cluster, 4 variables are stored: its
pivot’s position on the sliding window, the start and end positions
that it covers, and its radius. In the following part, we use pivot
to denote either the base window ending at its position or the cor-
responding local cluster data structure. Figure 3 shows the online
local clustering algorithm, where a greedy approach is used to form
local cluster partitions. In this algorithm, for a resulting cluster C,
each time tick ti in the left bin requires at most li distance compu-
tations if there are li elements aligned on ti’s left but within C. For
time ticks in the right bin, each requires a single distance computa-
tion. Thus if the average cluster size is m then the average number
of distance computations per time tick is at most m/2.

5.2 Batch Monitoring by Cluster Join
With local clusters, we search for neighbors in a batch manner.

Neighbor search for base window B is firstly triggered upon the for-
mation of B’s local cluster, and secondly called upon the arrival of
the rightmost point in B’s right sliding window if B’s accumulated
neighbor count has not reached k. In order to achieve the neigh-
bor search we must keep all needed data points, which we call the
current sliding window W . Let to1 be the oldest time tick in the
local clusters that overlaps with the left sliding windows of the new
data points that have not been clustered, and to2 be the oldest time
tick of a local cluster whose entire right sliding window has not yet
arrived. W is made up of all time ticks from min{to1, to2} to the
current time tick.

There are two concurrent steps in the batch monitoring:

• When a new local cluster Cnew is constructed, we join it with the
preceding clusters in a random order (by a clusterjoin function)
in W until every base window in Cnew has more than k neigh-
bors. If we exhaust all possible candidate base windows in the
left sliding window and cannot find k neighbors for base window
B in Cnew, we keep the neighbor count for B.

• When the entire right sliding window of all base windows in
local cluster Cold are arriving, in Cold, if any base window B’s
neighbor count is kept in step (1), B’s neighbor count in its right
sliding windows are determined in a similar way. The neighbor
count n1 collected in step (1) for a base window B is to be added
to the count n2 in this step to give the total neighbor count.

In the two batch monitoring steps, the clusterjoin function is to
accumulate the neighbor count in some cluster C for each base win-
dow in Cnew, which is a critical and expensive operation. Note that
if the average cluster size is m, the brute force join cost is O(m2).
However, based on properties of the local clusters, we could utilize
several rules to enhance efficiency as follows.

LEMMA 1. Given two local clusters C1 and C2, if distance(
C1.pivot, C2.pivot) + C1.radius + C2.radius < d, then ∀ base
window pair Bi and Bj , Bi ∈ C1 and Bj ∈ C2, distance(Bi,Bj) <
d.

LEMMA 2. Given two local clusters C1 and C2, if distance(
C1.pivot, C2.pivot)-C1.radius−C2.radius > d, then ∀ base win-
dow pair Bi and Bj , Bi ∈ C1 and Bj ∈ C2, distance(Bi,Bj) > d.

LEMMA 3. Given a base window B and a local cluster C, if
distance(B, C.pivot) + C.radius < d, then ∀ base window Bi ∈
C, distance(B,Bi) < d.

LEMMA 4. Given two base windows Bi ∈ C1 and Bj ∈ C2,
consider base windows as points and local clusters as hyper-balls
in high-dimensional space with their pivots as centroids, the per-
pendicular bisector hyper-plane P of C1 and C2, if distance(
C1.pivot, C2.pivot)−C1.radius−C2.radius < d and distance(Bi,
P) + distance(Bj , P)> d, then distance(Bi,Bj) > d.

The 4 lemmas allow us to devise pruning strategies that guar-
antee the correctness in anomaly monitoring. Totally, there are 5
cases for the spatial relationship between two local clusters, as de-
picted in Figure 4(a) to Figure 4(e). In Case 1 all elements in cluster
C are neighbors of all elements in the query cluster Q, and in this
case, joining the two clusters requires only one distance computa-
tion (between their pivots). In Case 2 no element in cluster C is
the neighbor of any element in query cluster Q, and in this case, to
join the two clusters requires only one distance computation, too.
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Figure 4: Local Cluster Relationships

Figure 5: Lemma 4

In Case 3 where all elements in cluster C are neighbors of some
elements in query cluster Q, and for those elements in Q, only one
distance computation is needed. In Case 4 some elements in clus-
ter C are neighbors of all elements in query cluster Q, and for those
elements in C, only one distance computation is needed. In Case 5
some elements in cluster C are neighbors of some elements in query
cluster Q, in this undesirable case, still some distance computations
could be pruned by Lemma 4, which is illustrated in Figure 5.

With the above analysis, we can join clusters by checking which
case the relationship belongs to, and then prune the distance com-
putations. Note that situations of Cases 3, 4 and 5 are overlapping,
so that some situation may belong to all the 3 cases. Therefore, we
apply pruning in the order of Case 3, Case 4, then Case 5.

By our proposed batch monitoring scheme with local clustering
and pruning rules, we can guarantee the correctness (in terms of
Definition 3) of retrieved result set (no false dismissal). However
by other clustering algorithms such as k-means, it will be difficult
to guarantee this point. The difference is that local clustering re-
quires not only the distances of base windows are close, but also
the base windows in a cluster are consecutive. No existing solution
considers this point. Good clustering is not our objective, but good
pruning power in processing continuous anomaly monitoring is.

5.3 Cost Analysis and Optimization
Now we analyze the cost of local clustering based batch moni-

toring, where both the benefit and overhead of local clustering are
considered. In our analysis, it is assumed that the sliding window
is of sufficient length (this models very large databases), so we
could increase the neighbor counts only when Case 1 in Figure 4 is
encountered, and ignore the other 4 cases. Although this may not
be optimal, it is enough to theoretically show our superiority over
simple pruning.

Let m be the average cluster size. We can think of the process of
joining a query cluster with candidate local clusters as independent
Bernoulli trials where we keep drawing candidates until �k/m�
successes appear or all candidates are exhausted. Hence, the num-
ber of trials follows the Pascal distribution. Assuming the average
radius of clusters is r, we have the following analytic results: The-
orem 2 gives the time cost per time tick, while Corollary 2 proposes
the optimized setting for cluster size.

THEOREM 2 (TIME COST OF BATCH MONITORING). Let Fx(d)
be the probability that a randomly drawn sample pivot lies within
distance d to query cluster’s pivot x, and Pa is the rate of anoma-
lies in the data set at time t. Value st at time tick t is within the left
bin or right bin of x, and N= wl + wr . Then the expected number
of distance computations Y at the time tick t is upper bounded by:

E(Y ) ≤ k

m2Fx(d − 2r)
+ PaN +

m

2
(2)

PROOF. The total expected cost of batch monitoring consists of
3 parts: the cost expectation on neighbor search for normal cases,
the expected cost on search for clusters with anomalies, and the
cost of building local clusters. We first analyze the expected dis-
tance computations Z during cluster joins for false candidate clus-
ter which does not contain any anomaly. The process will defi-
nitely stop at some join when the candidate’s neighbor count ex-
ceeds threshold k. Then, the following formula could be derived:

E(Z) =
1

m

N
m∑

z= k
m

P (Z = z)z

=
1

m

N
m∑

z= k
m

( z − 1
k
m
− 1

)
Fx(d − 2r)

k
m (1− Fx(d − 2r))z− k

m )z

≤ 1

m

∞∑
z= k

m

( z − 1
k
m
− 1

)
Fx(d − 2r)

k
m (1− Fx(d − 2r))z− k

m )z

=
k

m2Fx(d− 2r)

Due to pruning by case 2, the cost for clusters with anomalies is

E(Canomaly) ≤ PaN

The cost of local clustering incurring on every data point should
be included, which is:

E(C) ≤ m

2

E(Y ) = E(Z+Canomaly+C)=E(Z)+E(Canomaly)+E(C), thus In-
equality 2 holds.

COROLLARY 1 (OPTIMAL CLUSTER SIZE). Ignoring the cost
for anomaly cases (which is a small constant for any algorithm),
the cost of batch monitoring on every time tick could be optimized
when:

m = 3

√
4k

Fx(d − 2r)
(3)

then, the upper bound of minimized cost min(E(Y )) could be
obtained:

min(E(Y )) ≤ 1.2 3

√
k

Fx(d− 2r)
(4)

PROOF. The cost in right side of Inequality 2 could be mini-
mized when its partial derivative on m is 0, thus, we let:

∂E(Y )

∂m
=

1

2
− 2k

m3Fx(d − 2r)
= 0



Therefore, we could get:

m = 3

√
4k

Fx(d− 2r)

Applying Equation 3 to Inequality 2, Inequality 4 holds.

Following Corollary 1, we periodically reset mb= 3
√

4k
F (d−2r)

and

τ=F−1(mbF (r)), where F (distance distribution) and r are aggre-
gated from the past stream. At initialization, we set mb=6wb and
τ=d/8. Note that the initialization has little impact on the long term
performance of continuous monitoring.

Once a cluster is formed, it will never be changed; therefore there
is no computational maintenance cost, but only some memory cost
to store the cluster data structure (defined in Section 5.1), which is
given as follows, measured by memory units (4 bytes a unit).

PROPERTY 1 (MEMORY COST BY BATCH MONITORING).
Since each local cluster structure stores 4 variables, the additional
memory cost is CostBM = 4|W |

m
, which is very small, compared to

the basic necessary memory |W |.

For trajectory streams with local continuity, attested by our ex-
periments, r usually is tiny compared to d. Hence, Fx(d − 2r) ≈
Fx(d). Thus the search cost of batch processing is nearly the cost
of simple pruning divided by m2, where m is the average size of
local clusters. With ideal cluster size, the cost could be reduced to
nearly 3

√
cost of simple pruning.

6. INDEXING AND JOIN RESCHEDULING
Through local cluster-based pruning, the distance computations

will be largely reduced. However, most distance computations are
spent on the normal cases since most base windows extracted from
the trajectory streams are not anomalies. Hence, looking at the
batch monitoring, if candidate clusters on W are joined in a perfect
order that the query cluster first joins with candidate clusters which
satisfy the condition of case 1 in Figure 4(a), the query could be
proven to contain no anomalies quickly by very few distance com-
putations (only one distance computation for candidate cluster C,
while the query’s neighbor count increases by |C| ). If we examine
Figure 4 again, case 3 or case 4 is more likely to give rise to more
neighbors for the query cluster with less distance computations than
case 5. Hence we use

utility of C =
increase in number of neighbors to Q

number of distance computations

to measure the goodness of a candidate cluster. Obviously the
greater the utility is, the better the candidate is; and vice versa.
Comparing case 3, 4, and 5 in the above, the distance between the
pivot of a candidate cluster and pivot of a query cluster usually can
indicate the utility: smaller distance corresponds to higher utility.

Therefore, our basic idea is to build index for pivots along current
sliding window and then reschedule the cluster join order so as to
approach the best search order. We propose a novel way to index
trajectory stream by piecewise VP-trees (VP-tree: Vantage Point
Tree [10]). Here VP-tree occupies much less memory than R-tree,
because R-tree has to store bounding boxes in its nodes, but VP-
tree’s nodes only need to store pivots. Actually, any tree index
structures that do not store high dimensional vectors in their nodes
could be employed here.

We build piecewise VP-trees, in particular a different VP-tree
is built for an interval of the trajectory stream. In other words,
each VP-tree is indexing a fixed number of consecutive pivots. The

Lold Lnew

Figure 6: Piecewise VP-trees along the Sliding Window

piecewise indexing method allows us to remove an entire VP-tree
on data expiry, which is much more efficient than the use of a single
index tree where the expired data need to be deleted one by one.

6.1 Piecewise VP-trees
Figure 6 displays an overview of the structure of piecewise VP-

trees over a trajectory stream: each VP-tree is to index pivots of a
continuous period, and then pivots the whole sliding window are
indexed by v VP-trees, from VP-tree 1 to Vp-tree v, except some
boundary ones near the start or end of the sliding window. Next
we introduce how the piecewise index structure works and consider
the insert, delete, and query operations on the piecewise index.
Tree Insertion. When a new data point appends to the trajectory
stream, the online local clustering procedure is triggered. When a
new local cluster with its pivot Pnew is formed, it is immediately
put into a list Lnew (as shown in Figure 6) for new coming pivots.
The list Lnew is continuously updated until its size reaches the pre-
defined number (TN ) of pivots indexed by one VP-tree, at which
point a new VP-tree is built from the pivots in Lnew and inserted
into the VP-tree list LV P , and Lnew is reset to empty. Note that
once a VP-tree is built, the only function of it is to answer range
queries targeting at the pivots which are indexed by it, and will
never be updated all its life time.
Tree Deletion. When some data point in the scope of a VP-tree
phases out, the VP-tree is removed from LV P , all its pivots will be
inserted into a list Lold (as shown in Figure 6). Once a data point st

phases out, the “start position” of its pivot Pold (also current oldest
pivot) will be changed to t + 1. When Pold’s end position equals
to its start position, Pold will be removed from Lold.
Query Processing. When a new local cluster Cnew is formed, we
can accumulate its neighbor counts in the left sliding windows with
the assistance of VP-trees. Also when the entire right sliding win-
dow of local cluster Cold have arrived, we can count the total neigh-
bors of base windows in Cold to uncover anomalies. In either case,
Cnew or Cold becomes a query cluster Q. Given a query cluster
Q with radius rQ, let rmax be the maximum radius of the current
set of local clusters, for anomaly detection, a special case of range
query with (d + rmax + rQ) (see Definition 2 for d) as the range
is issued. When the number of neighbors of every base windows
in the query cluster reaches k (see Definition 2 for k), the query
processing is stopped. This is called the stopping condition for Q
(∀q ∈ Q, q’s neighbor count is larger than k).

6.2 Join Rescheduling
When a batch search (range query) is issued, we first look for the

query cluster’s spatially nearby clusters through the VP-tree list.
However, the trick here is that we do not join the query cluster with
selected candidate clusters immediately when they are found, for
the reason that in worst case, the join cost for two local cluster pair
of size m will require m2 distance computations. Instead, we first
enter candidate local clusters’ pivots into a candidate list, which is
to be used by the upcoming query optimization steps.
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Figure 7: Join Reschedule

When a new local cluster Cnew is constructed (or the whole right
sliding window of Cnew is arriving), we search its spatially nearby
local clusters in the VP-trees one by one until the stopping condi-
tion is reached or all trees are searched. Once the candidate local
cluster list is obtained after executing the query on one VP-tree,
candidate clusters in the list are put into a minimum heap, where
the ranking of clusters is based on the distances between candidate
local clusters’ pivots and the query cluster’s pivot. The smaller is
the distance, the higher layer the candidate is placed in the mini-
mum heap. The original cluster join procedure is now reordered to
join spatially nearest candidate first. Figure 7 demonstrates an ex-
ample about how the rescheduling works on one VP-tree. For the
query Q, we first get 4 candidate pivots through the range search in
VP-tree i, then the 4 candidates are put into the minimum heap H ,
the ranking of which is based on distance between candidates’ piv-
ots and Q’s pivot. Finally, Q keeps joining with the top element of
H until the stopping condition is met or all candidates are searched.

6.3 Cost Analysis
The above strategy improves efficiency from both VP-trees’ prun-

ing power and join rescheduling. Even without rescheduling, as-
suming the average pruning power of the VP-trees is p (0 ≤ p < 1),
the search cost could be reduced to (1 − p) · E(Y ) (see E(Y) in
Theorem 2). With rescheduling, the data processing speed will be
even faster. Property 2 and 3 analyze the extra cost during index
construction and extra requirements for memory.

PROPERTY 2 (TREE CONSTRUCTION COST). Given that n
is the total number of pivots along current sliding window, nvp

is the number of pivots indexed by one VP-tree, nl is the number
of pivots indexed in one leaf node, m is average cluster size, the
number of distance computations during tree construction incurred
for every time tick is:

Costbuild =
nlog2�nvp

nl
�

nm
=

1

m
log2�nvp

nl
� (5)

Obviously, in most cases, compared to the cost E(Y ) (in Theorem
2), Costbuild is small.

PROPERTY 3 (MEMORY COST OF PIECEWISE VP-TREES).
Given m and nl as in Property 2 ,|W | (the current sliding window
length), we derive the extra memory cost for VP-trees:

CostV P = nl
|W |
mnl

+ 4(
|W |
mnl

− 1) ≈ (nl + 4)|W |
mnl

(6)

CostV P ≈ 1
4
CostBM (CostBM is in Property 1), since normally

nl is much larger than 4.

The tree size nvp and leaf size nl are dynamically tuned for dif-
ferent workload streams.

7. EXPERIMENTAL EVALUATIONS
In this section, we evaluate both the effectiveness and efficiency

of our anomaly monitoring framework by extensive experimental
studies. Both real world datasets (movement, spaceshuttle, ge, alti-
tude, latitude, longitude) and synthetic dataset (random-walk)1 are
used. A Pentium IV 2.2GHz PC with 2GB RAM is used to con-
duct all our experiments. In our implementation, we simulate the
streaming manner by using a sliding window in the main memory.
First we load a trajectory dataset into the main memory, and ini-
tialize the sliding window’s start and end position. Then we keep
sliding the sliding window. When the sliding window slides one
point forward, the anomaly detection procedure is triggered, and
when the procedure is completed, the sliding window moves one
point forward again. For temporally overlapping anomalies, we
only report the first discovered one which can represent the whole
problematic region.

7.1 Effectiveness
We test the usefulness of trajectory stream anomaly (as Defini-

tion 3) on 2 annotated datasets “movement” and “spaceshuttle”.
“Spaceshuttle” contains a series of space shuttle marotta values.
“Movement" (MV) contains 12 days’ 3D trajectories of one person
on his way between home and office, and is annotated to indicate
where are the really meaningful anomaly subsequences, including
special events and localization errors. We measure the quality of
reported anomaly base windows by F-measure [2] as follows:

F-measure =
2 · Precision · Recall
Precision + Recall

Precision =
|Ro

⋂
Do|

|Ro| Recall =
|Do

⋂
Ro|

|Do|
where Do is the set of annotated anomalies in a dataset, Ro is the
set of “anomaly" results reported by an algorithm (perhaps includ-
ing false alarms). Here X

⋂
Y={wi|wi∈ X, ∃ wj∈Y, wi over-

laps with wj}. Note that we will explain detailed results based
on “movement” in Figure 8, while similar results on “spaceshuttle"
could be derived from Figure 9.

7.1.1 Comparing with Other Definitions
We compare our definition of trajectory stream anomaly with

2 counterparts: burst [32] and discord [19], both of which could
capture a portion of meaningful anomalies. Burst is a period on
trajectory streams with aggregated sum (for m-D base window X,
aggr(X)=

∑m
j=1 |

∑wb
i=1 Xi|) exceeding a threshold, while top-k dis-

cords are the subsequences with the top-k largest distances to its
nearest neighbor in archived time series. In the experiment for
bursts, we vary the threshold (the metric is its proportion over the
largest aggregated sum) and the base window length wb to investi-
gate how F-measure is impacted, and the results are shown in Fig-
ure 8(c). Similarly, by treating the dataset as an archived one, we
search top-k discords under different base window length wb, and
Figure 8(d) shows F-measure of reported top-k discords for differ-
ent (k, wb). From the results, we find that F-measure is always
less than 0.15 for burst, and less than 0.82 for discord no matter
how their parameters are tuned. From Figure 8(a) once the parame-
ters for our definition fall in a rather loose range, the F-measures is
nearly 100%. Figure 8(b) shows that the precision of our definition
is also good and robust. Besides results from “movement” dataset,
similar results have been observed on “spaceshuttle” dataset, which

1All the datasets and descriptions are available at:
http://www.cse.ust.hk/∼leichen/sigkdd09-repository/index.htm
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Figure 8: Effectiveness Comparisons With Burst and Discords(“movement”)
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Figure 9: Effectiveness Comparisons With Burst and Discords(“spaceshuttle”)
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Figure 10: Parameter Effects

confirm that our definition is superior. The rationale is that burst
misses spatial deviations and discord misses similar anomalies, but
our definition covers them.

7.1.2 Parameter Setting
We investigate the impact of parameter setting on “movement”

dataset.
Effect of k and d. We vary k and d while let wb=64 and sliding win-
dow be the whole dataset to investigate the effectiveness of our def-
inition trajectory stream anomaly, the results of which are demon-
strated in Figure 8(a). Here the metric of d is its proportion over the
diameter of the dataset (the farthest distance between a base win-
dow pair). It could be found that when k and d lie in a rather loose
range (0.015 ≤ d ≤ 0.03, 4 ≤ k ≤ 10), the F-measure is 100%.
Moreover, the precision is 100% when k and d vary in a even larger
range, as in Figure 8(b).

Effect of Base Window Length wb. Figure 10(a) shows how F-
measure changes with wb under different (k, d) configurations. Of
course wb depends on the applications and the length of periods
that people are interested in. Yet here we find that our anomaly
detection results usually are not very sensitive to wb.

Effect of Sliding Window Length |W |. In this experiment, we change
the current sliding window length |W |, while let wb=64, to see how
the F-measure is affected by |W |. From the results in Figure 10(b),
we can conclude that no matter how (k, d) is configured, the larger

|W | is, the better the monitoring quality will be. Therefore, appli-
cations should set the sliding window as long as possible.

Suitable Range for All Parameters. From more experiments, we
find that when k is 4 ∼ 10, d is 0.015 to 0.03 of diameter, and wb

is 32 ∼ 256, the F-measures are always high. For |W |, it should
better be as large as the memory could hold.

7.2 Efficiency
Since our solutions aim at high speed and large scale moving

object trajectory streams, which differ from other work where usu-
ally small or non-streaming datasets are used, there are 6 very large
trajectory datasets involved in the efficiency experiments: altitude
(Al), latitude (La), longitude (Lo), random-walk (RW), ge (GE),
and movement (MV).

We compare the costs of the 4 algorithms: SP (simple prun-
ing) [3], DWT (discrete wavelet transform) [7], BM (our batch
monitoring) and VR (our VP-tree based rescheduling), by the num-
ber of distance computations they called and the total running time.
Similarity search techniques like SVD [22], DWT [7], APCA [18],
and Chebyshev Polynomials [6] could naturally be employed for
our monitoring procedure. Since DWT has similar performance
with those peers and is widely used, we choose DWT [7] as a repre-
sentative to compare with our algorithms, where truncated wavelet
coefficients for each candidate subsequence are maintained in order
to obtain distance lower bounds. The number of distance computa-
tions of DWT consists of the number of both non-pruned distance
computations on subsequences and conversions of computations
for lower bound distances on coefficients.

In these experiments, we let wb=128 and 256, vary k from 8 to
15, and change d from 0.015 to 0.025 diameter, and then record
an average performance for the 4 competitive algorithms. Sliding
window length |W | for each dataset is as follows: 244159 (Al),
73410 (La), 124442 (Lo), 111139 (RW), 55832 (GE), and 165122
(MV), and we slide forward the sliding window 650000 ticks for
each dataset (loop sliding if the end of dataset is touched). The
reduced dimensionality of DWT coefficients is 8 (for MV, it is 2
because larger dimensionality will lead to memory overflow!). We



(a) Pruning Power, wb=128 (b) Pruning Power, wb=256 (c) Total Running Time, wb=128 (d) Total Running Time, wb=256
Figure 11: Efficiency vs. Datasets

use very large sliding windows in order to simulate real applica-
tions’ workloads.

From the results in Figure 11(a), (b), (c) and (d), we could see
clearly that VR gets orders of magnitude improvement to SP (on
average 179.87 times speedup) and beats DWT significantly (on
average 31.64 times speedup). Thus, even if DWT could only use
the first coefficient to achieve the same pruning power, VR is still
much more efficient. With SP, the average processing time per data
point arrival is 4.5 ∼ 33.7 milliseconds, while with VR it is only
0.05 ∼ 0.5 milliseconds! Since all the 4 algorithms guarantee the
correctness and get the same results, the efficiency improvement by
our techniques has no quality regression, and consumes little extra
memory (see Property 1 and 3). The weakness of VR is that it can-
not get significant performance improvement on highly fluctuant
time series, which is also attested by experiments.

8. CONCLUSIONS
In this paper, targeting typical scenarios of context-aware appli-

cations, we extract a useful and general research problem: monitor-
ing distance-based anomalies over moving object trajectory streams,
and propose data structures and algorithms employing local clus-
tering and piecewise VP-tree based rescheduling to efficiently con-
duct such a task. The experimental results validate our solutions by
showing both the usefulness of distance-based anomalies and or-
ders of magnitude improvement in performance compared to sim-
ple pruning approach. To the best of our knowledge, this is the first
work that provides efficient support for continuous monitoring of
distance-based anomalies over trajectory streams.
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